This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0004211531 Reproduction Date:
A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption, meaning the total amount of energy used by the building on an annual basis is roughly equal to the amount of renewable energy created on the site. These buildings still produce greenhouse gases because on cloudy (or non-windy) days, at night when the sun isn't shining, and on short winter days, conventional grid power is still the main energy source. Because of this, most zero net energy buildings still get half or more of their energy from the grid. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses".
Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases.[1][2] The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero-energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.
Most zero-energy buildings use the electrical grid for energy storage but some are independent of grid. Energy is usually harvested on-site through a combination of energy producing technologies like solar and wind, while reducing the overall use of energy with highly efficient HVAC and lighting technologies. The zero-energy goal is becoming more practical as the costs of alternative energy technologies decrease and the costs of traditional fossil fuels increase.
The development of modern zero-energy buildings became possible not only through the progress made in new energy and construction technologies and techniques, but it has also been significantly improved by academic research, which collects precise energy performance data on traditional and experimental buildings and provides performance parameters for advanced computer models to predict the efficacy of engineering designs. Zero Energy Building is considered as a part of smart grid. Some advantages of these buildings are as follow:
The zero-energy concept allows for a wide range of approaches due to the many options for producing and conserving energy combined with the many ways of measuring energy (relating to cost, energy, or carbon emissions).
Despite sharing the name "zero net energy", there are several definitions of what the term means in practice, with a particular difference in usage between North America and Europe.[3]
The information is based on the publications,[8][9] and [10] in which deeper information could be found.
The most cost-effective steps toward a reduction in a building's energy consumption usually occur during the design process.[11] To achieve efficient energy use, zero energy design departs significantly from conventional construction practice. Successful zero energy building designers typically combine time tested passive solar, or artificial conditioning, principles that work with the on-site assets. Sunlight and solar heat, prevailing breezes, and the cool of the earth below a building, can provide daylighting and stable indoor temperatures with minimum mechanical means. ZEBs are normally optimized to use passive solar heat gain and shading, combined with thermal mass to stabilize diurnal temperature variations throughout the day, and in most climates are superinsulated.[12] All the technologies needed to create zero energy buildings are available off-the-shelf today.
Sophisticated 3-D building energy simulation tools are available to model how a building will perform with a range of design variables such as building orientation (relative to the daily and seasonal position of the sun), window and door type and placement, overhang depth, insulation type and values of the building elements, air tightness (weatherization), the efficiency of heating, cooling, lighting and other equipment, as well as local climate. These simulations help the designers predict how the building will perform before it is built, and enable them to model the economic and financial implications on building cost benefit analysis, or even more appropriate – life cycle assessment.
Zero-energy buildings are built with significant energy-saving features. The heating and cooling loads are lowered by using high-efficiency equipment, added insulation, high-efficiency windows, natural ventilation, and other techniques. These features vary depending on climate zones in which the construction occurs. Water heating loads can be lowered by using water conservation fixtures, heat recovery units on waste water, and by using solar water heating, and high-efficiency water heating equipment. In addition, daylighting with skylights or solartubes can provide 100% of daytime illumination within the home. Nighttime illumination is typically done with fluorescent and LED lighting that use 1/3 or less power than incandescent lights, without adding unwanted heat. And miscellaneous electric loads can be lessened by choosing efficient appliances and minimizing phantom loads or standby power. Other techniques to reach net zero (dependent on climate) are Earth sheltered building principles, superinsulation walls using straw-bale construction, Vitruvianbuilt pre-fabricated building panels and roof elements plus exterior landscaping for seasonal shading.
Zero-energy buildings are often designed to make dual use of energy including white goods; for example, using refrigerator exhaust to heat domestic water, ventilation air and shower drain heat exchangers, office machines and computer servers, and body heat to heat the building. These buildings make use of heat energy that conventional buildings may exhaust outside. They may use heat recovery ventilation, hot water heat recycling, combined heat and power, and absorption chiller units.
ZEBs harvest available energy to meet their electricity and heating or cooling needs. In the case of individual houses, various microgeneration technologies may be used to provide heat and electricity to the building, using solar cells or wind turbines for electricity, and biofuels or solar thermal collectors linked to a seasonal thermal energy storage (STES) for space heating. An STES can also be used for summer cooling by storing the cold of winter underground. To cope with fluctuations in demand, zero energy buildings are frequently connected to the electricity grid, export electricity to the grid when there is a surplus, and drawing electricity when not enough electricity is being produced.[3] Other buildings may be fully autonomous.
Energy harvesting is most often more effective (in cost and resource utilization) when done on a local but combined scale, for example, a group of houses, cohousing, local district, village, etc. rather than an individual basis. An energy benefit of such localized energy harvesting is the virtual elimination of electrical transmission and electricity distribution losses. These losses amount to about 7.2%–7.4% of the energy transferred.[13] Energy harvesting in commercial and industrial applications should benefit from the topography of each location. The production of goods under net zero fossil energy consumption requires locations of geothermal, microhydro, solar, and wind resources to sustain the concept.[14]
Zero-energy neighborhoods, such as the BedZED development in the United Kingdom, and those that are spreading rapidly in California and China, may use distributed generation schemes. This may in some cases include district heating, community chilled water, shared wind turbines, etc. There are current plans to use ZEB technologies to build entire off-the-grid or net zero energy use cities.
One of the key areas of debate in zero energy building design is over the balance between energy conservation and the distributed point-of-use harvesting of renewable energy (solar energy and wind energy). Most zero energy homes use a combination of the two strategies.
As a result of significant government subsidies for photovoltaic solar electric systems, wind turbines, etc., there are those who suggest that a ZEB is a conventional house with distributed renewable energy harvesting technologies. Entire additions of such homes have appeared in locations where photovoltaic (PV) subsidies are significant,[15] but many so called "Zero Energy Homes" still have utility bills. This type of energy harvesting without added energy conservation may not be cost effective with the current price of electricity generated with photovoltaic equipment (depending on the local price of power company electricity),[16] and may also requires greater embodied energy and greater resources so be thus the less ecological approach.
Since the 1980s, passive solar building design and passive house have demonstrated heating energy consumption reductions of 70% to 90% in many locations, without active energy harvesting. For new builds, and with expert design, this can be accomplished with little additional construction cost for materials over a conventional building. Very few industry experts have the skills or experience to fully capture benefits of the passive design.[17] Such passive solar designs are much more cost-effective than adding expensive photovoltaic panels on the roof of a conventional inefficient building.[16] A few kilowatt-hours of photovoltaic panels (costing 2 to 3 dollars per annual kW-hr production, U.S. dollar equivalent) may only reduce external energy requirements by 15% to 30%. A 100,000 BTU (110 MJ) high seasonal energy efficiency ratio 14 conventional air conditioner requires over 7 kW of photovoltaic electricity while it is operating, and that does not include enough for off-the-grid night-time operation. Passive cooling, and superior system engineering techniques, can reduce the air conditioning requirement by 70% to 90%. Photovoltaic-generated electricity becomes more cost-effective when the overall demand for electricity is lower.
The energy used in a building can vary greatly depending on the behavior of its occupants. The acceptance of what is considered comfortable varies widely. Studies of identical homes in the United States have shown dramatic differences in energy use, with some homes using more than twice the energy of others.[18] Occupant behavior can vary from differences in setting and programming thermostats, varying levels of illumination and hot water, and the amount of miscellaneous electric devices or plug loads used.[19]
Wide acceptance of zero-energy building technology may require more government incentives or building code regulations, the development of recognized standards, or significant increases in the cost of conventional energy.
The Google photovoltaic campus and the Microsoft 480-kilowatt photovoltaic campus relied on U.S. Federal, and especially California, subsidies and financial incentives. California is now providing US$3.2 billion in subsidies[20] for residential-and-commercial near-zero-energy buildings, due to California's serious electricity shortage, frequent power outages, and air pollution problems. The details of other American states' renewable energy subsidies (up to US$5.00 per watt) can be found in the Database of State Incentives for Renewables and Efficiency.[21] The Florida Solar Energy Center has a slide presentation on recent progress in this area.[22]
The World Business Council for Sustainable Development[23] has launched a major initiative to support the development of ZEB. Led by the CEO of
If implemented, the Energy Free Home Challenge would have provided increased incentives for improved technology and consumer education about zero energy buildings coming in at the same cost as conventional housing.
The website energyfreehome redirects as of October 2012 to fvgroup.com/philanthropy, and information on the $20-million Challenge is no longer available at that site.[59]
The Lawrence Berkeley National Laboratory at the University of California, Berkeley participated in writing the "Feasibility of Achieving Zero-Net-Energy, Zero-Net-Cost Homes"[58] for the $20-million Energy Free Home Challenge.
Beginning in 2009, Thomas Siebel made many presentations about his Energy Free Home Challenge.[56] The Siebel Foundation Report stated that the Energy Free Home Challenge was "Launching in late 2009".[57]
The plan included funding to build the top ten entries at $250,000 each, a $10 million first prize, and then a total of 100 such homes to be built and sold to the public.
In 2007, the philanthropic Siebel Foundation created the Energy Free Home Foundation. The goal was to offer $20 million in global incentive prizes to design and build a 2,000 square foot (186 square meter) three-bedroom, two bathroom home with (1) net-zero annual utility bills that also has (2) high market appeal, and (3) costs no more than a conventional home to construct.[55]
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be Zero-Net-Energy by 2030.
The Solar Energy Tax Credits have been extended until the end of 2016. Solar power in the United States
The 2008 Solar America Initiative funded research and development into future development of cost-effective Zero Energy Homes in the amount of $148 million in 2008.[53][54]
The U.S. Energy Independence and Security Act of 2007[52] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should soon demonstrate multiple new technology innovations and mass production economies of scale.
DOE is also awarding $4.1 million to two regional building technology application centers that will accelerate the adoption of new and developing energy-efficient technologies. The two centers, located at the University of Central Florida and Washington State University, will serve 17 states, providing information and training on commercially available energy-efficient technologies.[51]
In the National Renewable Energy Laboratory (NREL), the Florida Solar Energy Center (FSEC), Lawrence Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL). From fiscal year 2008 to 2012, DOE plans to award $40 million to four Building America teams, the Building Science Corporation; IBACOS; the Consortium of Advanced Residential Buildings; and the Building Industry Research Alliance, as well as a consortium of academic and building industry leaders. The funds will be used to develop net-zero-energy homes that consume at 50% to 70% less energy than conventional homes.[51]
In December 2006, the government announced that by 2016 all new homes in England will be zero energy buildings. To encourage this, an exemption from Stamp Duty Land Tax is planned. In Wales the plan is for the standard to be met earlier in 2011, although it is looking more likely that the actual implementation date will be 2012. However, as a result of a unilateral change of policy published at the time of the March 2011 budget, a more limited policy is now planned which, it is estimated, will only mitigate two thirds of the emissions of a new home.[48][49]
The Swiss MINERGIE-A-Eco label certifies zero energy buildings. The first building with this label, a single-family home, was completed in Mühleberg in 2011.[47]
Singapore's first zero-energy building was launched at the inaugural Singapore Green Building Week.[46]
In February 2009, the Research Council of Norway assigned The Faculty of Architecture and Fine Art at the Norwegian University of Science and Technology to host the Research Centre on Zero Emission Buildings (ZEB), which is one of eight new national Centres for Environment-friendly Energy Research (FME). The main objective of the FME-centres is to contribute to the development of good technologies for environmentally friendly energy and to raise the level of Norwegian expertise in this area. In addition, they should help to generate new industrial activity and new jobs. Over the next eight years, the FME-Centre ZEB will develop competitive products and solutions for existing and new buildings that will lead to market penetration of zero emission buildings related to their production, operation and demolition.
In September 2006, the Dutch headquarters of the World Wildlife Fund (WWF) in Zeist was opened. This earth-friendly building gives back more energy than it uses. All materials in the building were tested against strict requirements laid down by the WWF and the architect.[45]
In October 2007, the Malaysia Energy Centre (PTM) successfully completed the development and construction of the PTM Zero Energy Office (ZEO) Building. The building has been designed to be a super-energy-efficient building using only 286 kW·h/day. The renewable energy – photovoltaic combination is expected to result in a net zero energy requirement from the grid. The building is currently undergoing a fine tuning process by the local energy management team. Findings are expected to be published in a year.[44]
In 2012 Cork institute of Technology started renovation work on its 1974 building stock to develop a net zero energy building retrofit.[43] The exemplar project will become Ireland's first zero energy testbed offering a post occupancy evaluation of actual building performance against design benchmarks.
In 2005, Scandinavian Homes[41] launched the world's first standardised passive house in Ireland, this concept makes the design and construction of passive house a standardised process. Conventional low energy construction techniques have been refined and modelled on the PHPP (Passive House Design Package) to create the standardised passive house. Building offsite allows high precision techniques to be utilised and reduces the possibility of errors in construction. In 2009 the same company started a project to use 23,000 liters of water in a seasonal storage tank,[42] heated up by evacuated solar tubes throughout the year, with the aim to provide the house with enough heat throughout the winter months thus eliminating the need for any electrical heat to keep the house comfortably warm. The system is monitored and documented by a research team from The University of Ulster and the results will be included in part of a PhD thesis.
Also an example of the new generation of zero energy office buildings is the 24-story OIIC [39] Office Tower, which is started in 2011, as the OIIC Company headquarters. It uses both modest energy efficiency, and a big distributed renewable energy generation from both solar and wind. It is managed by Rahgostar Naft Company in Tehran, Iran. The tower is receiving economic support from government subsidies that are now funding many significant fossil-fuel-free efforts.[40]
In 2011, Payesh Energy House (PEH) or Khaneh Payesh Niroo by a collaboration of Fajr-e-Toseah Consultant Engineering Company [37] and Vancouver Green Homes Ltd] under management of Payesh Energy Group (EPG) launched the first Net-Zero passive house in Iran. This concept makes the design and construction of PEH a sample model and standardized process for mass production by MAPSA.[38]
India's first net zero building is Indira Paryavaran Bhawan, located in New Delhi. Features include passive solar building design and other green technologies.[36]
Strategic Research Centre on Zero Energy Buildings was in 2009 established at Aalborg University by a grant from the Danish Council for Strategic Research (DSF), the Programme Commission for Sustainable Energy and Environment, and in cooperation with the Technical University of Denmark, Danish Technological Institute, Danfoss A/S, Velux A/S, Saint Gobain Isover A/S, and The Danish Construction Association, the section of aluminium facades. The purpose of the centre is through development of integrated, intelligent technologies for the buildings, which ensure considerable energy conservations and optimal application of renewable energy, to develop zero energy building concepts. In cooperation with the industry, the centre will create the necessary basis for a long-term sustainable development in the building sector.
In Belgium there is a project with the ambition to make the Belgian city Leuven climate-neutral in 2030: http://www.petertomjones.be/content/view/447/1.
Between 2008 and 2013, researchers from Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Korea, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, United Kingdom and USA were working together in the joint research program “Towards Net Zero Energy Solar Buildings” under the umbrella of International Energy Agency (IEA) Solar Heating and Cooling Program (SHC) Task 40 / Energy in Buildings and Communities (EBC, formerly ECBCS) Annex 52 [4] in order to bring the Net ZEB concept to market viability. The joint international research and demonstration activities are divided in subtasks. The objective is to develop a common understanding, a harmonized international applicable definition framework (Subtask A, see definitions methodology “Net Zero Energy Building” above), design process tools (Subtask B), advanced building design and technology solutions and industry guidelines for Net ZEBs (Subtask C). The scope encompasses new and existing residential and non-residential buildings located within the climatic zones of the participating countries.
Many green building certification programs do not require a building to have net zero energy use, only to reduce energy use a few percentage points below the minimum required by law. The Leadership in Energy and Environmental Design (LEED) certification developed by the U.S. Green Building Council, and Green Globes, involve check lists that are measurement tools, not design tools. Inexperienced designers or architects may cherry-pick points to meet a target certification level, even though those points may not be the best design choices for a specific building or climate. In November, 2011, the International Living Future Institute developed the Net Zero Energy Building Certification. Designed as part of the Living Building Challenge, Net Zero Energy Building Certification is simple, cost effective and critical for integrity and transparency.
Because of the design challenges and sensitivity to a site that are required to efficiently meet the energy needs of a building and occupants with renewable energy (solar, wind, geothermal, etc.), designers must apply holistic design principles, and take advantage of the free naturally occurring assets available, such as passive solar orientation, natural ventilation, daylighting, thermal mass, and night time cooling.
The goal of green building and sustainable architecture is to use resources more efficiently and reduce a building's negative impact on the environment.[26] Zero energy buildings achieve one key green-building goal of completely or very significantly reducing energy use and greenhouse gas emissions for the life of the building. Zero energy buildings may or may not be considered "green" in all areas, such as reducing waste, using recycled building materials, etc. However, zero energy, or net-zero buildings do tend to have a much lower ecological impact over the life of the building compared with other "green" buildings that require imported energy and/or fossil fuel to be habitable and meet the needs of occupants.
The zero-energy building concept has been a progressive evolution from other low-energy building designs. Among these, the Canadian R-2000 and the German passive house standards have been internationally influential. Collaborative government demonstration projects, such as the superinsulated Saskatchewan House, and the International Energy Agency's Task 13, have also played their part.
Those who commissioned construction of passive houses and zero-energy homes (over the last three decades) were essential to iterative, incremental, cutting-edge, technology innovations. Much has been learned from many significant successes, and a few expensive failures.
[24]
Wind power, Solar power, Sustainable development, Biomass, Global warming
Ontario, Quebec City, Quebec, Ottawa, Aboriginal peoples in Canada
Renewable energy, Energy, Sun, Agriculture, India
Japan, Renewable energy, Sustainable energy, Solar energy, Wind power
Isle of Man, India, Canada, European Union, British Overseas Territories
Sustainability, Solar energy, Passive house, Energy conservation, Sustainable architecture
Hvac, Building Information Modeling, United States Environmental Protection Agency, House Energy Rating, Efficient energy use
Pittsburgh, U.S. Green Building Council, Nevada, Washington, D.C., Texas
Standby power, Hvac, Energy Star, Entertainment center, Major appliance
Renewable energy, Solar energy, Wind power, Photovoltaics, Autonomy