World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0004355970
Reproduction Date:

Title: Zearalenone  
Author: World Heritage Encyclopedia
Language: English
Subject: Zeranol, Bisphenol S, Testolactone, Female reproductive toxins, Mycotoxicology
Collection: Female Reproductive Toxins, Mycotoxins, Resorcinols
Publisher: World Heritage Encyclopedia


CAS number  YesY
ChemSpider  YesY
Jmol-3D images Image 1
Molecular formula C18H22O5
Molar mass 318.36 g mol−1
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Zearalenone (ZEA), also known as RAL and F-2 mycotoxin, is a potent estrogenic metabolite produced by some Fusarium and Gibberella species.[1]

Several Fusarium species produce toxic substances of considerable concern to livestock and poultry producers, namely deoxynivalenol, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone. Zearalenone is the primary toxin, causing infertility, abortion or other breeding problems, especially in swine.

Zearalenone is heat-stable and is found worldwide in a number of cereal crops, such as maize, barley, oats, wheat, rice, and sorghum[2][3] and also in bread.


  • Chemical and physical properties 1
  • Dermal exposure 2
  • Sampling and analysis 3
  • See also 4
  • References 5
  • External links 6

Chemical and physical properties

Zearalenone is a white crystalline solid. It exhibits blue-green fluorescence when excited by long wavelength UV light (360 nm) and a more intense green fluorescence when excited with short wavelength UV light (260 nm). In methanol, UV absorption maxima occur at 236 (e = 29,700), 274 (e = 13,909) and 316 nm (e = 6,020). Maximum fluorescence in ethanol occurs with irradiation at 314 nm and with emission at 450 nm. Solubility in water is about 0.002 g/100 mL. It is slightly soluble in hexane and progressively more so in benzene, acetonitrile, methylene chloride, methanol, ethanol, and acetone. It is also soluble in aqueous alkali.

Dermal exposure

Zearalenone can permeate through the human skin.[4] However, no significant hormonal effects are expected after dermal contact in normal agricultural or residential environments.

Sampling and analysis

In common with other mycotoxins, sampling food commodities for zearalenone must be carried out to obtain samples representative of the consignment under test. Commonly used extraction solvents are aqueous mixtures of methanol, acetonitrile, or ethyl acetate followed by a range of different clean-up procedures that depend in part on the food and on the detection method in use. TLC methods and HPLC are commonly used. HPLC alone is not sufficient, as it may often yield false positive results. Today, HPLC-MSMS analysis is used to quantify and confirm the presence of zearalenone.

The TLC method for zearalenone is: normal phase silica gel plates, the eluent: 90% dichloromethane, 10% v/v acetone; or reverse phase C18 silica plates; the eluent: 90% v/v methanol, 10% water. Zearalenone gives unmistakable blue luminiscence under UV.[1]

See also


  1. ^ a b "Zearalenone".  
  2. ^ Kuiper-Goodman, T.; Scott, P. M.; Watanabe, H. (1987). "Risk Assessment of the Mycotoxin Zearalenone".  
  3. ^ Tanaka, T.; Hasegawa, A.; Yamamoto, S.; Lee, U. S.; Sugiura, Y.; Ueno, Y. (1988). "Worldwide Contamination of Cereals by the Fusarium Mycotoxins Nivalenol, Deoxynivalenol, and Zearalenone. 1. Survey of 19 Countries". Journal of Agricultural and Food Chemistry (American Chemical Society) 36 (5): 979–983.  
  4. ^ Boonen, J.; Malysheva, S. V.; Taevernier, L.; Diana di Mavungu, J.; de Saeger, S.; de Spiegeleer, B. (2012). "Human Skin Penetration of Selected Model Mycotoxins". Toxicology 301 (1–3): 21–32.  

External links

  • Eriksen, G. S.; Pennington, J.; Schlatter, J. (2000). "Zearalenone". WHO International Programme on Chemical Safety - Safety Evaluation of Certain Food Additives and Contaminants. Inchem. WHO Food Additives Series: 44. 
  • "MSDS for Zearalenone". Fermentek. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.