World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0001246346
Reproduction Date:

Title: Vignetting  
Author: World Heritage Encyclopedia
Language: English
Subject: Holga, Aperture, Photographic filter, Nikon F-mount, APS-C
Collection: Optics, Photographic Techniques, Science of Photography
Publisher: World Heritage Encyclopedia


A vignette is often added to an image to draw interest to the center and to frame the center portion of the photo.
Vignetting is a common feature of photographs produced by toy cameras such as this shot taken with a Holga.
This example shows both vignetting and restricted field of view (FOV). Here a "point-and-shoot camera" is used together with a microscope to create this image. Pronounced vignetting (fall off in brightness towards the edge) is visible as the optical system is not well adapted. Please note that furthermore a circular restriction of the FOV is visible (the black area in the image).

In photography and optics, vignetting ( The phenomenon that result of image is fading out at the rim of image


  • Causes 1
    • Mechanical vignetting 1.1
    • Optical vignetting 1.2
    • Natural vignetting 1.3
    • Pixel vignetting 1.4
  • Post-shoot 2
  • See also 3
  • References and sources 4


There are several causes of vignetting. Sidney F. Ray[1] distinguishes the following types:

  • Mechanical vignetting
  • Optical vignetting
  • Natural vignetting

A fourth cause is unique to digital imaging:

  • Pixel vignetting

A fifth cause is unique to analog imaging:

Mechanical vignetting

Mechanical vignetting occurs when light beams emanating from object points located off-axis are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods. This has the effect of changing the entrance pupil shape as a function of angle (resulting in the path of light being partially blocked). Darkening can be gradual or abrupt – the smaller the aperture, the more abrupt the vignetting as a function of angle.

When some points on an image receives no light at all due to mechanical vignetting (the paths of light to these image points is completely blocked), then this results in an restriction of the field of view (FOV) – parts of the image are then completely black.

Optical vignetting

This type of vignetting is caused by the physical dimensions of a multiple element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease in light intensity towards the image periphery. Optical vignetting is sensitive to the lens aperture and can often be cured by a reduction in aperture of 2–3 stops. (An increase in the F-number.)

Natural vignetting

Unlike the previous types, natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the cos4 or "cosine fourth" law of illumination falloff. Here, the light falloff is proportional to the fourth power of the cosine of the angle at which the light impinges on the film or sensor array. Wideangle rangefinder designs and the lens designs used in compact cameras are particularly prone to natural vignetting. Telephoto lenses, retrofocus wideangle lenses used on SLR cameras, and telecentric designs in general are less troubled by natural vignetting. A gradual grey filter or postprocessing techniques may be used to compensate for natural vignetting, as it cannot be cured by stopping down the lens. Some modern lenses are specifically designed so that the light strikes the image parallel or nearly so, eliminating or greatly reducing vignetting.

Pixel vignetting

Pixel vignetting only affects digital cameras and is caused by angle-dependence of the digital sensors. Light incident on the sensor at normal incident produces a stronger signal than light hitting it at an oblique angle. Most digital cameras use built-in image processing to compensate for optical vignetting and pixel vignetting when converting raw sensor data to standard image formats such as JPEG or TIFF. The use of offset microlenses over the image sensor can also reduce the effect of pixel vignetting.

Vignetting can be used to artistic effect, as demonstrated in this panorama.
Vignetting can be applied in the post-shoot phase with digital imaging software.


For artistic effect, vignetting is sometimes applied to an otherwise un-vignetted photograph and can be achieved by burning the outer edges of the photograph (with film stock) or using digital imaging techniques, such as masking darkened edges. The Lens Correction filter in Photoshop can also achieve the same effect.

In digital imaging, this technique is used to create a lo-fi appearance in the picture.

See also

References and sources

  1. ^ Sidney F. Ray, Applied photographic optics, 3rd ed., Focal Press (2002) ISBN 978-0-240-51540-3.
  • Van Walree's webpage on vignetting uses some unorthodox terminology but illustrates very well the physics and optics of mechanical and optical vignetting.
  • Peter B. Catrysse, Xinqiao Liu, and Abbas El Gamal: QE Reduction due to Pixel Vignetting in CMOS Image Sensors; in Morley M. Blouke, Nitin Sampat, George M. Williams, Jr., Thomas Yeh (ed.): Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, Proceedings of SPIE, vol. 3965 (2000).
  • Yuanjie Zheng, Stephen Lin, and Sing Bing Kang, Single-Image Vignetting Correction; IEEE Conference on Computer Vision and Pattern Recognition 2006
  • Olsen, Doug; Dou, Changyong; Zhang, Xiaodong; Hu, Lianbo; Kim, Hojin; Hildum, Edward. 2010. "Radiometric Calibration for AgCam" Remote Sens. 2, no. 2: 464-477.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.