World Library  
Flag as Inappropriate
Email this Article

Undergraduate Texts in Mathematics

Article Id: WHEBN0008871375
Reproduction Date:

Title: Undergraduate Texts in Mathematics  
Author: World Heritage Encyclopedia
Language: English
Subject: Graduate Texts in Mathematics, Heinz-Dieter Ebbinghaus, Infinite descending chain, First-order logic
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Undergraduate Texts in Mathematics

Undergraduate Texts in Mathematics (UTM) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.

The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level.

There is no Springer-Verlag numbering of the books like in the Graduate Texts in Mathematics series. The books are numbered here by year of publication.

List of books

  1.  
  2.  
  3. Kemeny, John G.; Snell, J. Laurie (1976). Finite Markov Chains: With a New Appendix: "Generalization of a Fundamental Matrix".  
  4. Singer, I. M.; Thorpe, J. A. (1976). Lecture Notes on Elementary Topology and Geometry.  
  5.  
  6. Sigler, L. E. (1976). Algebra.  
  7. Fleming, Wendell (1977). Functions of Several Variables.  
  8. Croom, F.H. (1978). Basic Concepts of Algebraic Topology.  
  9. LeCuyer, Edward J. (1978). Introduction to College Mathematics with A Programming Language.  
  10. Sethuraman, B. A. (1978). Rings, Fields, and Vector Spaces: An Introduction to Abstract Algebra via Geometric Constructibility.  
  11. Duda, E.; Whyburn, G. (1979). Dynamic Topology.  
  12. Jantosciak, J.; Prenowitz, W. (1979). Join Geometries: A Theory of Convex Sets and Linear Geometry.  
  13. Malitz, Jerome (1979). Introduction to Mathematical Logic: Set Theory - Computable Functions - Model Theory.  
  14. Wilson, R. L. (1979). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer.  
  15. Franklin, Joel (1980). Methods of Mathematical Economics: Linear and Nonlinear Programming. Fixed-Point Theorems.  
  16. Macki, Jack; Strauss, Aaron (1981). Introduction to Optimal Control Theory.  
  17. Foulds, L. R. (1981). Optimization Techniques: An Introduction.  
  18. Fischer, E. (1982). Intermediate Real Analysis.  
  19. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry.  
  20. Martin, George E. (1983). The Foundations of Geometry and the Non-Euclidean Plane.  
  21. Owen, David R. (1983). A First Course in the Mathematical Foundations of Thermodynamics.  
  22. Smith, K. T. (1983). Primer of Modern Analysis: Directions for Knowing All Dark Things, Rhind Papyrus, 1800 B.C.  
  23. Berberian, S. K.; Dixmier, J. (1984). General Topology.  
  24. Morrey, Charles B. Jr.; Protter, Murray H. (1984). Intermediate Calculus.  
  25.  
  26. Driver, R.D. (1984). Why Math?.  
  27. Foulds, L. R. (1984). Combinatorial Optimization for Undergraduates.  
  28. Jänich, Klaus (1984). Topology.  
  29. Bühler, W. K.; Cornell, G.; Opolka, H.; Scharlau, W. (1985). From Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development.  
  30. Marsden, Jerrold; Weinstein, Alan (1985). Calculus I.  
  31. Marsden, Jerrold; Weinstein, Alan (1985). Calculus II.  
  32. Marsden, Jerrold; Weinstein, Alan (1985). Calculus III.  
  33. Lang, Serge (1985). Introduction to Linear Algebra.  
  34. Stanton, Dennis; White, Dennis (1986). Constructive Combinatorics.  
  35. Klambauer, Gabriel (1986). Aspects of Calculus.  
  36. Lang, Serge (1986). A First Course in Calculus.  
  37. James, I. M. (1987). Topological and Uniform Spaces.  
  38. Lang, Serge (1987). Calculus of Several Variables.  
  39. Lang, Serge (1987). Linear Algebra.  
  40. Peressini, Anthony L.; Sullivan, Francis E.; Uhl, J.J. Jr. (1988). The Mathematics of Nonlinear Programming.  
  41. Samuel, Pierre; Levy, Silvio (1988). Projective Geometry.  
  42. Armstrong, M. A. (1988). Groups and Symmetry.  
  43. Brémaud, Pierre (1988). An Introduction to Probabilistic Modeling.  
  44. Iooss, Gerard; Joseph, Daniel D. (1989). Elementary Stability and Bifurcation Theory.  
  45. Bressoud, David M. (1989). Factorization and Primality Testing.  
  46. Brickman, Louis (1989). Mathematical Introduction to Linear Programming and Game Theory.  
  47. Strayer, James K. (1989). Linear Programming and Its Applications.  
  48. Flanigan, Francis J.; Frank, David L.; Fristedt, Bert E.; Gary, Lawrence F.; Kazdan, Jerry L. (1990). Calculus Two: Linear and Nonlinear Functions.  
  49. Millman, Richard S.; Parker, George D. (1990). Geometry: A Metric Approach with Models.  
  50. Palka, Bruce P. (1990). An Introduction to Complex Function Theory.  
  51. Banchoff, Thomas; Wermer, John (1991). Linear Algebra Through Geometry.  
  52. Hoffmann, Karl-Heinz; Hämmerlin, Günther; Schumaker, Larry L. (1991). Numerical Mathematics.  
  53. Morrey, Charles B. Jr.; Protter, Murray H. (1991). A First Course in Real Analysis.  
  54. Anglin, W.S. (1991). Mathematics: A Concise History and Philosophy.  
  55. Bressoud, David M. (1991). Second Year Calculus: From Celestial Mechanics to Special Relativity.  
  56. Silverman, Joseph H.; Tate, John (1992). Rational Points on Elliptic Curves.  
  57.  
  58. Kinsey, L. Christine (1993). Topology of Surfaces.  
  59. Simmonds, James G. (1993). A Brief on Tensor Analysis.  
  60. Valenza, Robert J. (1993). Linear Algebra: An Introduction to Abstract Mathematics.  
  61.  
  62. Berberian, Sterling K. (1994). A First Course in Real Analysis.  
  63. Jänich, Klaus (1994). Linear Algebra.  
  64. Pedrick, George (1994). A First Course in Analysis.  
  65.  
  66.  
  67. Anglin, W.S.; Lambek, J. (1995). The Heritage of Thales.  
  68. Browder, Andrew (1995). Mathematical Analysis: An Introduction.  
  69. Isaac, Richard (1995). The Pleasures of Probability.  
  70. Hairer, Ernst; Wanner, Gerhard (1996). Analysis by its History.  
  71. Hilton, Peter; Holton, Derek; Pedersen, Jean (1996). Mathematical Reflections: In a Room with Many Mirrors.  
  72. Exner, George R. (1996). An Accompaniment to Higher Mathematics.  
  73. Lang, Serge (1996). Undergraduate Analysis.  
  74. Troutman, John L. (1996). Variational Calculus and Optimal Control: Optimization with Elementary Convexity.  
  75. Buskes, Gerard; Rooij, Arnoud Van (1997). Topological Spaces: From Distance to Neighborhood.  
  76. Fine, Benjamin; Rosenberger, Gerhard (1997). The Fundamental Theorem of Algebra.  
  77. Lidl, Rudolf; Pilz, Günter (1997). Applied Abstract Algebra.  
  78. Axler, Sheldon (1997). Linear Algebra Done Right.  
  79. Beardon, Alan F. (1997). Limits: A New Approach to Real Analysis.  
  80. Gordon, Hugh (1997). Discrete Probability.  
  81. Roman, Steven (1997). Introduction to Coding and Information Theory.  
  82.  
  83. Martin, George E. (1998). Geometric Constructions.  
  84. Protter, Murray H. (1998). Basic Elements of Real Analysis.  
  85. Priestley, W. M. (1998). Calculus: A Liberal Art.  
  86. Singer, David A. (1998). Geometry: Plane and Fancy.  
  87. Smith, Larry (1998). Linear Algebra.  
  88. Laubenbacher, Reinhard; Pengelley, David (1999). Mathematical Expeditions: Chronicles by the Explorers.  
  89. Callahan, James J. (1999). The Geometry of Spacetime.  
  90. Frazier, Michael W. (1999). An Introduction to Wavelets Through Linear Algebra.  
  91. Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications.  
  92. Brunt, B. van; Carter, M. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction.  
  93. Exner, George R. (2000). Inside Calculus.  
  94. Hartshorne, Robin (2000). Geometry: Euclid and Beyond.  
  95. Abbott, Stephen (2001). Understanding Analysis.  
  96. Cederberg, Judith N. (2001). A Course in Modern Geometries.  
  97. Gamelin, Theodore W. (2001). Complex Analysis.  
  98. Jänich, Klaus (2001). Vector Analysis.  
  99. Martin, George E. (2001). Counting: The Art of Enumerative Combinatorics.  
  100. Saxe, Karen (2001). Beginning Functional Analysis.  
  101. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2002). A Course in Multivariable Calculus and Analysis.  
  102. Hilton, Peter; Holton, Derek; Pedersen, Jean (2002). Mathematical Vistas: From a Room with Many Windows.  
  103. Estep, Donald (2002). Practical Analysis in One Variable.  
  104. Gerstein, Larry J. (2002). Introduction to Mathematical Structures and Proofs.  
  105. Toth, Babor (2002). Glimpses of Algebra and Geometry.  
  106. Aitsahlia, Farid; Chung, Kai Lai (2003). Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance.  
  107. Erdös, Paul; Suranyi, Janos (2003). Topics in the Theory of Numbers.  
  108. Lovász, Pelikán L.; Vesztergombi, K. (2003). Discrete Mathematics: Elementary and Beyond.  
  109. Pugh, Charles C. (2003). Real Mathematical Analysis.  
  110.  
  111. Buchmann, Johannes (2004). Introduction to Cryptography.  
  112. Irving, Ronald S. (2004). Integers, Polynomials, and Rings: A Course in Algebra.  
  113. Logan, David J. (2004). Applied Partial Differential Equations.  
  114. Cull, Paul; Flahive, Mary; Robson, Robby (2005). Difference Equations: From Rabbits to Chaos.  
  115. Davidson, Kenneth R.; Donsig, Allan P. (2005). Real Analysis and Applications.  
  116. Chambert-Loir, Antoine (2005). A Field Guide to Algebra.  
  117. Elaydi, Saber (2005). An Introduction to Difference Equations.  
  118. Lang, Serge (2005). Undergraduate Algebra.  
  119.  
  120. Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom.  
  121.  
  122. Cox, David; Little, John; O'Shea, Danal (2006). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.  
  123. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2006). A Course in Calculus and Real Analysis.  
  124.  
  125. Bix, Robert (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves.  
  126. Logan, David J. (2006). A First Course in Differential Equations.  
  127. Shores, Thomas S. (2006). Applied Linear Algebra and Matrix Analysis.  
  128. Beck, Matthias; Robins, Sinai (2007). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra.  
  129. Knoebel, Art; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David (2007). Mathematical Masterpieces: Further Chronicles by the Explorers.  
  130. Edgar, Gerald (2007). Measure, Topology, and Fractal Geometry.  
  131. Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory.  
  132. Hoffstein, Jeffrey; Pipher, Jill; Silverman, J. H. (2008). Introduction to Mathematical Cryptography.  
  133. Childs, Lindsay N. (2008). A Concrete Introduction to Higher Algebra.  
  134. Stein, William (2008). Elementary Number Theory: Primes, Congruences, and Secrets.  
  135.  
  136. Herod, James; Shonkwiler, Ronald (2009). Mathematical Biology: An Introduction with Maple and Matlab.  
  137. Mendivil, Frank; Shonkwiler, Ronald (2009). Explorations in Monte Carlo Methods.  
  138.  
  139. Beck, Matthias; Geoghegan, Ross (2010). The Art of Proof.  
  140. Armstrong, M. A. (2010). Basic Topology.  
  141. Callahan, James J. (2010). Advanced Calculus: A Geometric View.  
  142. Hurlbert, Glenn (2010). Linear Optimization: The Simplex Workbook.  
  143. Ross, Clay C. (2010). Differential Equations: An Introduction with Mathematica.  
  144.  
  145. Daepp, Ulrich; Pamela, Gorkin (2011). Reading, Writing, and Proving: A Closer Look at Mathematics.  
  146. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics.  
  147. Hijab, Omar (2011). Introduction to Calculus and Classical Analysis.  
  148. Adkins, William A.; Davidson, Mark G. (2012). Ordinary Differential Equations.  
  149. Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History.  
  150. Petersen, Peter (2012). Linear Algebra.  
  151. Roman, Steven (2012). Introduction to the Mathematics of Finance: Arbitrage and Option Pricing.  
  152. Terrell, Maria Shea; Lax, Peter (2013). Calculus with Applications.  
  153. Vanderbei, Robert J.; Çinlar, Erhan (2013). Real and Convex Analysis.  
  154. Bajnok, Bela (2013). An Invitation to Abstract Mathematics.  
  155. McInerney, Andrew (2013). First Steps in Differential Geometry.  
  156. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus.  
  157. Stanley, Richard P. (2013). Algebraic Combinatorics.  

References

External links

  • Springer-Verlag's Summary of Undergraduate Texts in Mathematics
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.