World Library  
Flag as Inappropriate
Email this Article

Temporal lobe

Article Id: WHEBN0000466322
Reproduction Date:

Title: Temporal lobe  
Author: World Heritage Encyclopedia
Language: English
Subject: Inferior temporal gyrus, Human brain, Frontal lobe, Parietal lobe, Brodmann area 37
Collection: Cerebrum
Publisher: World Heritage Encyclopedia

Temporal lobe

Temporal lobe
Lobes of the human brain (temporal lobe is shown in green)
Section of brain showing upper surface of temporal lobe.
Latin Lobus temporalis
Part of Brain
Middle cerebral artery[1]:16
Posterior cerebral artery[1]:26
Superficial middle cerebral vein[1]:16
Inferior anastomotic vein[2]
MeSH A08.186.211.730.885.213.863
NeuroNames hier-107
NeuroLex ID Temporal Lobe
Anatomical terms of neuroanatomy

The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.[3]

The temporal lobe is involved in processing sensory input into derived meanings for the appropriate retention of visual memories, language comprehension, and emotion association.[4]:21


  • Structure 1
    • Medial temporal lobe 1.1
  • Function 2
    • Visual memories 2.1
    • Processing sensory input 2.2
    • Language recognition 2.3
    • New memories 2.4
  • Clinical significance 3
    • Unilateral temporal lesion 3.1
    • Dominant hemisphere 3.2
    • Non-dominant hemisphere 3.3
    • Bitemporal lesions (additional features) 3.4
    • Damage 3.5
    • Disorders 3.6
  • References 4
  • External links 5


Medial temporal lobe

The medial temporal lobe consists of structures that are vital for declarative or long-term memory. Declarative (denotative) or explicit memory is conscious memory divided into semantic memory (facts) and episodic memory (events).[4]:194 Medial temporal lobe structures that are critical for long-term memory include the hippocampus, along with the surrounding hippocampal region consisting of the perirhinal, parahippocampal, and entorhinal neocortical regions.[4]:196 The hippocampus is critical for memory formation, and the surrounding medial temporal cortex is currently theorized to be critical for memory storage.[4]:21 The prefrontal and visual cortices are also involved in explicit memory.[4]:21

Research has shown that lesions in the hippocampus of monkeys results in limited impairment of function, whereas extensive lesions that include the hippocampus and the medial temporal cortex result in severe impairment.[5]


Visual memories

The temporal lobe contains the hippocampus and plays a key role in the formation of explicit long-term memory modulated by the amygdala.[4]:349

Processing sensory input

Adjacent areas in the superior, posterior, and lateral parts of the temporal lobes are involved in high-level auditory processing. The temporal lobe is involved in primary auditory perception, such as hearing, and holds the primary auditory cortex.[6] The primary auditory cortex receives sensory information from the ears and secondary areas process the information into meaningful units such as speech and words.[6] The superior temporal gyrus includes an area (within the lateral fissure) where auditory signals from the cochlea first reach the cerebral cortex and are processed by the primary auditory cortex in the left temporal lobe.
The areas associated with vision in the temporal lobe interpret the meaning of visual stimuli and establish object recognition. The ventral part of the temporal cortices appear to be involved in high-level visual processing of complex stimuli such as faces (fusiform gyrus) and scenes (parahippocampal gyrus). Anterior parts of this ventral stream for visual processing are involved in object perception and recognition.[6]
Animation of the human left temporal lobe

Language recognition

The left temporal lobe holds the primary auditory cortex, which is important for the processing of semantics in both speech and vision in humans.Wernicke's area]], which spans the region between temporal and parietal lobes, plays a key role (in tandem with Broca's area in the frontal lobe) in speech comprehension.[7] The functions of the left temporal lobe are not limited to low-level perception but extend to comprehension, naming, and verbal memory.

New memories

The medial temporal lobes (near the sagittal plane) are thought to be involved in encoding declarative long term memory.[4]:194–199 The medial temporal lobes include the hippocampi, which are essential for memory storage, therefore damage to this area can result in impairment in new memory formation leading to permanent or temporary anterograde amnesia.[4]:194–199

Clinical significance

Unilateral temporal lesion

  • Contralateral homonymous upper quadrantanopia (sector anopsia)
  • Complex hallucinations (smell, sound, vision, memory)

Dominant hemisphere

Non-dominant hemisphere

  • Impaired non-verbal memory
  • Impaired musical skills
  • Prosopagnosia

Bitemporal lesions (additional features)


Individuals who suffer from medial temporal lobe damage have a difficult time recalling visual stimuli. This neurotransmission deficit is due, not to lacking perception of visual stimuli but, to lacking perception of interpretation.[8] The most common symptom of inferior temporal lobe damage is visual agnosia, which involves impairment in the identification of familiar objects. Another less common type of inferior temporal lobe damage is prosopagnosia which is an impairment in the recognition of faces and distinction of unique individual facial features.[9]

Damage specifically to the anterior portion of the left temporal lobe can cause savant syndrome.[10]


Pick's disease, also known as frontotemporal amnesia, is caused by atrophy of the frontotemporal lobe.[11] Emotional symptoms include mood changes, which the patient may be unaware of, including poor attention span and aggressive behavior towards themselves and/or others. Language symptoms include loss of speech, inability to read and/or write, loss of vocabulary and overall degeneration of motor ability.[12]

Temporal lobe epilepsy is a chronic neurological condition characterized by recurrent seizures; symptoms include a variety of sensory (visual, auditory, olfactory, and gustation) hallucinations, as well as an inability to process semantic and episodic memories.[13]


  1. ^ a b c Starr, Philip A.; Barbaro, Nicholas M.; Larson, Paul S. (30 November 2008). Neurosurgical Operative Atlas: Functional Neurosurgery. Thieme. pp. 16, 26.  
  2. ^ Sekhar, Laligam N.; de Oliveira, Evandro (1999). Cranial Microsurgery: Approaches and Techniques. Thieme. p. 432.  
  3. ^ "Temporal Lobe". Langbrain. Rice University. Retrieved 2 January 2011. 
  4. ^ a b c d e f g h Smith; Kosslyn (2007). Cognitive Psychology: Mind and Brain. New Jersey: Prentice Hall. pp. 21, 194–199, 349. 
  5. ^ Squire, LR; Stark, CE; Clark, RE (2004). "The medial temporal lobe" (PDF). Annual Review of Neuroscience 27: 279–306.  
  6. ^ a b c Schacter, Daniel L.; Gilbert, Daniel T.; Wegner, Daniel M. (2010). Psychology (2nd ed.). New York: Worth Publishers.  
  7. ^ Hickok, Gregory; Poeppel, David (May 2007). ""The Cortical Organization of Speech Processing"". Nature (Nature Publishing Group) 8 (5): 393–402.  
  8. ^ Pertzov, Y., Miller, T. D., Gorgoraptis, N., Caine, D., Schott, J. M., Butler, C., & Husain, M. (2013). Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain: A Journal Of Neurology, 136(8), 2474-2485.
  9. ^ Mizuno, T., & Takeda, K. (2009). [The symptomatology of frontal and temporal lobe damages]. Brain And Nerve = Shinkei Kenkyū No Shinpo, 61(11), 1209-1218.
  10. ^ Treffert, D. A. (2009). "The savant syndrome: An extraordinary condition. A synopsis: Past, present, future". Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1522): 1351–7.  
  11. ^ Takeda, N.; Kishimoto, Y.; Yokota, O. (2012). "Pick's disease". Advances In Experimental Medicine And Biology 724: 300–316.  
  12. ^ Yokota, O.; Tsuchiya, K.; Arai, T.; Yagishita, S.; Matsubara, O.; Mochizuki, A.; Akiyama, H. (2009). "Clinicopathological characterization of Pick's disease versus frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions". Acta Neuropathologica 117 (4): 429–444.  
  13. ^ Lah, S., & Smith, M. (2013). Semantic and Episodic Memory in Children With Temporal Lobe Epilepsy: Do They Relate to Literacy Skills?. Neuropsychology doi:10.1037/neu0000029

External links

  • The medial temporal lobe memory system
  • H. M.’s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.