World Library  
Flag as Inappropriate
Email this Article
 

Synthetic oil

A sample of synthetic motor oil

Synthetic oil is a lubricant consisting of chemical compounds that are artificially made (synthesized). Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. Synthetic oil is used as a substitute for lubricant refined from petroleum when operating in extremes of temperature, because, in general, it provides superior mechanical and chemical properties to those found in traditional mineral oils. Aircraft jet engines, for example, require the use of synthetic oils, whereas aircraft piston engines do not. Synthetic lubricants are also used in metal stamping to provide environmental and other benefits when compared to conventional petroleum and animal fat based products. These products are also referred to as "non-oil" or "oil free".

Contents

  • Types 1
    • Synthetic Oil 1.1
      • PAO 1.1.1
      • Ester 1.1.2
    • Semi-synthetic oil 1.2
    • Other base stocks help semi-synthetic lubricants 1.3
  • Performance 2
    • Advantages 2.1
    • Disadvantages 2.2
  • See also 3
  • References 4

Types

Synthetic Oil

Synthetic base stock lubricant oils, as described above, are man-made and tailored to have a controlled molecular structure with predictable properties. They are composed of organic and inorganic base stock oils combined with polymer packages to produce synthesised oil compounds (API Groups III, IV & V).

PAO

API Group IV Polyalphaolefins, 100% Synthetic chemical compound.

Poly-alpha-olefin (or poly-α-olefin, abbreviated as PAO), is a polymer made by polymerizing an alpha-olefin. it is a specific type of alkene where the carbon-carbon double bond starts at the α-carbon atom, i.e. the double bond is between the #1 and #2 carbons in the molecule.[1]

Ester

API Group V alkoxy) group, most commonly from carboxylic acids and alcohols. That is to say, esters are formed by condensing an acid with an alcohol.

Many chemically different "esters" due to their usually excellent lubricity are used for various reasons as either "additives" or "base stocks" for lubricants. [1]

Semi-synthetic oil

Semi-synthetic oils (also called 'synthetic blends') are blends of mineral oil with no more than 30% synthetic oil designed to have many of the benefits of synthetic oil without matching the cost of pure synthetic oil. Motul introduced the first semi-synthetic motor oil in 1966.[2]

Lubricants that have synthetic base stocks even lower than 30% but with high-performance additives consisting of esters can also be considered synthetic lubricants. In general, the ratio of the synthetic base stock is used to define commodity codes among the customs declarations of tax purposes.

Other base stocks help semi-synthetic lubricants

API Group II- and API Group III-type base stocks help to formulate more economic-type semi-synthetic lubricants. API Group I-, II-, II+-, and III-type mineral-base oil stocks are widely used in combination with additive packages, performance packages, and ester and/or API Group IV poly-alpha-olefins in order to formulate semi-synthetic-based lubricants. API Group III base oils are sometimes considered Fully synthetic, but they are still classified as highest-top-level mineral-base stocks. A Synthetic or Synthesized material is one that is produced by combining or building individual units into a unified entry. Synthetic base stocks as described above are man-made and tailored to have a controlled molecular structure with predictable properties, unlike mineral base oils, which are complex mixtures of naturally occurring hydrocarbons and paraffins.[3] [4]

Performance

Advantages

The technical advantages of synthetic motor oils include:

  • Better low- and high-temperature viscosity performance at service temperature extremes
  • Better (higher) Viscosity Index (VI)
  • Better chemical and shear stability [5]
  • Decreased evaporative loss
  • Resistance to oxidation, thermal breakdown, and oil sludge problems
  • Extended drain intervals, with the environmental benefit of less used oil waste generated
  • Improved fuel economy in certain engine configurations
  • Better lubrication during extreme cold weather starts
  • Possibly a longer engine life
  • Superior protection against "ash" and other deposit formation in engine hot spots (in particular in turbochargers and superchargers) for less oil burnoff and reduced chances of damaging oil passageway clogging.
  • Increased horsepower and torque due to less initial drag on engine
  • Improved fuel efficiency - from 1.8% to up to 5% has been documented in fleet tests

Disadvantages

The disadvantages of synthetic motor oils include:

  • Substantially more expensive (per volume) than mineral oils.
  • Potential decomposition problems in certain chemical environments (predominantly in industrial use.)

See also

References

  1. ^ a b SynLube Incorporated. [2] All About Synthetic Oil
  2. ^ DELPHI history
  3. ^ ASTM Fuels & Lubricants Handbook, Hydrocarbon Chemistry, pg 169-184, section 7
  4. ^ Wills, J. George (of Mobil Oil Corporation) (1980). Lubrication Fundamentals. M. Dekker.  
  5. ^ http://link.springer.com/article/10.3103%2FS1068366614050092
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.