This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0015464966 Reproduction Date:
Pathogenic bacteria are bacteria that cause bacterial infection. This article deals with human pathogenic bacteria.
Although most bacteria are harmless or often beneficial, several are pathogenic. One of the bacterial diseases with the highest disease burden is tuberculosis, caused by the bacterium Mycobacterium tuberculosis, which kills about 2 million people a year, mostly in sub-Saharan Africa. Pathogenic bacteria contribute to other globally important diseases, such as pneumonia, which can be caused by bacteria such as Streptococcus and Pseudomonas, and foodborne illnesses, which can be caused by bacteria such as Shigella, Campylobacter, and Salmonella. Pathogenic bacteria also cause infections such as tetanus, typhoid fever, diphtheria, syphilis, and leprosy.
Koch's postulates are criteria designed to establish a causal relationship between a causative microbe and a disease.
Each pathogenic species has a characteristic spectrum of interactions with its human hosts.
Conditionally pathogenic bacteria are only pathogenic under certain conditions, such as a wound that allows for entry into the blood, or a decrease in immune function.
For example, Staphylococcus or Streptococcus are also part of the normal human flora and usually exist on the skin or in the nose without causing disease, but can potentially cause skin infections, pneumonia, meningitis, and even overwhelming sepsis, a systemic inflammatory response producing shock, massive vasodilation and death.[1]
Some species of bacteria, such as Pseudomonas aeruginosa, Burkholderia cenocepacia, and Mycobacterium avium, are opportunistic pathogens and cause disease mainly in people suffering from immunosuppression or cystic fibrosis.[2][3]
Other organisms invariably cause disease in humans, such as asymptomatic, such as during the incubation period. An example of intracellular bacteria is Rickettsia. One species of Rickettsia causes typhus, while another causes Rocky Mountain spotted fever.
Chlamydia, another phylum of obligate intracellular parasites, contains species that can cause pneumonia or urinary tract infection and may be involved in coronary heart disease.[4]
Salmonella, Neisseria, Brucella, Mycobacterium, Listeria, Francisella, Legionella, and Yersinia pestis can exist intracellularly, though they are facultative (not obligate) intracellular parasites.
Following is a list of bacterial infections classified by location in the body:
Iron is required for humans, as well as the growth of most bacteria. To obtain free iron, some pathogens secrete proteins called siderophores, which take the iron away from iron-transport proteins by binding to the iron even more tightly. Once the iron-siderophore complex is formed, it is taken up by siderophore receptors on the bacterial surface and then that iron is brought into the bacterium.[13]
Once pathogens attach to host cells, they can cause direct damage as the pathogens use the host cell for nutrients and produce waste products. As pathogens multiply and divide inside host cells, the cells usually rupture and the intercellular bacteria are released. Some bacteria such as E. coli, Shigella, Salmonella, and Neisseria gonorrhoeae, can induce host epithelial cells to engulf them in a process resembling phagocytosis. The pathogens can then disrupt host cells as they pass through them and be extruded from host cells by a reverse phagocytosis process, enabling them to enter other host cells. Some bacteria can also penetrate host cells by excreting enzymes and by their own motility; such penetration can can itself damage the host cell.[13]
Toxins are poisonous substances that are produced by certain microorganisms and are often the primary factor contributing to the pathogenic properties of the microorganisms. Endotoxins are the lipid portions of lipopolysaccharides that are part of the outer membrane of the cell wall of gram negative bacteria. Endotoxins are released when the bacteria lyses, which is why after antibiotic treatment symptoms can at first worsen as the bacteria are killed and they release their endotoxins.Exotoxins are proteins produced inside pathogenic bacteria as part of their growth and metabolism, most common in gram positive bacteria. The exotoxins are released when the bacteria die and the cell wall breaks apart. Exotoxins are highly specific in the effects on body tissues and work by destroying particular parts of the host cell or by inhibiting certain metabolic functions. Exotoxins are among the most lethal known substances, only 1mg of the botulinum exotoxin is enough to kill one million guinea pigs. Diseased caused this way are often caused by minute amounts of exotoxins, not by the bacteria themselves.[13]
Bacterial infections may be treated with antibiotics, which are classified as bacteriocidal if they kill bacteria or bacteriostatic if they just prevent bacterial growth. There are many types of antibiotics and each class inhibits a process that is different in the pathogen from that found in the host. For example, the antibiotics chloramphenicol and tetracyclin inhibit the bacterial ribosome but not the structurally different eukaryotic ribosome, so they exhibit selective toxicity.[14] Antibiotics are used both in treating human disease and in intensive farming to promote animal growth. Both uses may be contributing to the rapid development of antibiotic resistance in bacterial populations.[15] Phage therapy can also be used to treat certain bacterial infections.[16] Infections can be prevented by antiseptic measures such as sterilizing the skin prior to piercing it with the needle of a syringe and by proper care of indwelling catheters. Surgical and dental instruments are also sterilized to prevent infection by bacteria. Disinfectants such as bleach are used to kill bacteria or other pathogens on surfaces to prevent contamination and further reduce the risk of infection. Bacteria in food are killed by cooking to temperatures above 73 °C (163°F).
Following are the genera that contain the most important human pathogenic bacteria species:[17]
This is a rather clinical description of the species presented in the previous section, containing the main examples of transmission, diseases, treatment, prevention and laboratory diagnosis, which all can differ substantially among the species of the same genus.
Complications:
Food poisoning:
(resistance-tests are required first)
Meningitis:
Diarrhea:
Heating water
Prevention of exposure
Lepromatous form:
(difficult, see Tuberculosis treatment for more details)
Standard "short" course:
Ophthalmia neonatorum:
Localized to eye, ear, skin, urinary, respiratory or gastrointestinal tract or CNS, or systemic with bacteremia, secondary pneumonia bone and joint infections, endocarditis, skin, soft tissue or CNS infections.
: BAC
()
/ ()/ ()/
drug (, , , , )
Archaea, Anthrax, Cheese, Cyanobacteria, Cholera
Tuberculosis, Culture, Mechanical ventilation, Cough, Fever
Tetracycline, Metronidazole, Carbon, Hydrogen, Nitrogen
Egypt, Malnutrition, Diseases of poverty, Pathogenic bacteria, World Bank
Pathogenic bacteria, Medical Subject Headings, Infection, Cancer, HACEK endocarditis
Medicine, Malaria, Pneumonia, Cancer, Pathology
Pathogenic bacteria, Influenza, Nobel Prize in Physiology or Medicine, Tuberculosis, Food and Drug Administration
Bacteria, Proteobacteria, Gammaproteobacteria, Pathogenic bacteria, Gram-negative bacteria