"Ordered set" redirects here. For totally ordered sets, see
total order.
In mathematics, especially order theory, a partially ordered set (or poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set, one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair of elements need be related: for some pairs, it may be that neither element precedes the other in the poset.
Thus, partial orders generalize the more familiar total orders, in which every pair is related. A finite poset can be visualized through its Hasse diagram, which depicts the ordering relation.^{[1]}
A familiar reallife example of a partially ordered set is a collection of people ordered by genealogical descendancy. Some pairs of people bear the descendantancestor relationship, but other pairs bear no such relationship.
Formal definition
A (nonstrict) partial order^{[2]} is a binary relation "≤" over a set P which is reflexive, antisymmetric, and transitive, i.e., which satisfies for all a, b, and c in P:
 a ≤ a (reflexivity);
 if a ≤ b and b ≤ a then a = b (antisymmetry);
 if a ≤ b and b ≤ c then a ≤ c (transitivity).
In other words, a partial order is an antisymmetric preorder.
A set with a partial order is called a partially ordered set (also called a poset). The term ordered set is sometimes also used for posets, as long as it is clear from the context that no other kinds of orders are meant. In particular, totally ordered sets can also be referred to as "ordered sets", especially in areas where these structures are more common than posets.
For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, then a and b are comparable. Otherwise they are incomparable. In the figure on topright, e.g. {x} and {x,y,z} are comparable, while {x} and {y} are not. A partial order under which every pair of elements is comparable is called a total order or linear order; a totally ordered set is also called a chain (e.g., the natural numbers with their standard order). A subset of a poset in which no two distinct elements are comparable is called an antichain (e.g. the set of singletons in the topright figure). An element a is said to be covered by another element b, written a<:b, if a is strictly less than b and no third element c fits between them; formally: if both a≤b and a≠b are true, and a≤c≤b is false for each c with a≠c≠b. A more concise definition will be given below using the strict order corresponding to "≤". For example, {x} is covered by {x,z} in the topright figure, but not by {x,y,z}.
Examples
Standard examples of posets arising in mathematics include:
 The real numbers ordered by the standard lessthanorequal relation ≤ (a totally ordered set as well).
 For a partially ordered set P, the sequence space containing all sequences of elements from P, where sequence a precedes sequence b if every item in a precedes the corresponding item in b. Formally, (a_{n})_{n∈ℕ} ≤ (b_{n})_{n∈ℕ} if and only if a_{n} ≤ b_{n} for all n in ℕ.
 For a set X and a partially ordered set P, the function space containing all functions from X to P, where f ≤ g if and only if f(x) ≤ g(x) for all x in X.
 A fence, a partially ordered set defined by an alternating sequence of order relations a < b > c < d ...
Extrema
There are several notions of "greatest" and "least" element in a poset P, notably:
 Greatest element and least element: An element g in P is a greatest element if for every element a in P, a ≤ g. An element m in P is a least element if for every element a in P, a ≥ m. A poset can only have one greatest or least element.
 Maximal elements and minimal elements: An element g in P is a maximal element if there is no element a in P such that a > g. Similarly, an element m in P is a minimal element if there is no element a in P such that a < m. If a poset has a greatest element, it must be the unique maximal element, but otherwise there can be more than one maximal element, and similarly for least elements and minimal elements.
 Upper and lower bounds: For a subset A of P, an element x in P is an upper bound of A if a ≤ x, for each element a in A. In particular, x need not be in A to be an upper bound of A. Similarly, an element x in P is a lower bound of A if a ≥ x, for each element a in A. A greatest element of P is an upper bound of P itself, and a least element is a lower bound of P.
For example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element (although if one would include 0 in the poset, which is a multiple of any integer, that would be a greatest element; see figure). This partially ordered set does not even have any maximal elements, since any g divides for instance 2g, which is distinct from it, so g is not maximal. If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {2,3,5,10}, which subset does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which subset does not have any upper bound.
Orders on the Cartesian product of partially ordered sets
In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the Cartesian product of two partially ordered sets are (see figures):
All three can similarly be defined for the Cartesian product of more than two sets.
Applied to ordered vector spaces over the same field, the result is in each case also an ordered vector space.
See also orders on the Cartesian product of totally ordered sets.
Strict and nonstrict partial orders
In some contexts, the partial order defined above is called a nonstrict (or reflexive, or weak) partial order. In these contexts a strict (or irreflexive) partial order "<" is a binary relation that is irreflexive, transitive and asymmetric, i.e. which satisfies for all a, b, and c in P:
 not a < a (irreflexivity),
 if a < b and b < c then a < c (transitivity), and
 if a < b then not b < a (asymmetry; implied by irreflexivity and transitivity^{[3]}).
There is a 1to1 correspondence between all nonstrict and strict partial orders.
If "≤" is a nonstrict partial order, then the corresponding strict partial order "<" is the irreflexive reduction given by:
 a < b if a ≤ b and a ≠ b
Conversely, if "<" is a strict partial order, then the corresponding nonstrict partial order "≤" is the reflexive closure given by:
 a ≤ b if a < b or a = b.
This is the reason for using the notation "≤".
Using the strict order "<", the relation "a is covered by b" can be equivalently rephrased as "a<b, but not a<c<b for any c".
Strict partial orders are useful because they correspond more directly to directed acyclic graphs (dags): every strict partial order is a dag, and the transitive closure of a dag is both a strict partial order and also a dag itself.
Inverse and order dual
The inverse or converse ≥ of a partial order relation ≤ satisfies x≥y if and only if y≤x. The inverse of a partial order relation is reflexive, transitive, and antisymmetric, and hence itself a partial order relation. The order dual of a partially ordered set is the same set with the partial order relation replaced by its inverse. The irreflexive relation > is to ≥ as < is to ≤.
Any one of these four relations ≤, <, ≥, and > on a given set uniquely determine the other three.
In general two elements x and y of a partial order may stand in any of four mutually exclusive relationships to each other: either x < y, or x = y, or x > y, or x and y are incomparable (none of the other three). A totally ordered set is one that rules out this fourth possibility: all pairs of elements are comparable and we then say that trichotomy holds. The natural numbers, the integers, the rationals, and the reals are all totally ordered by their algebraic (signed) magnitude whereas the complex numbers are not. This is not to say that the complex numbers cannot be totally ordered; we could for example order them lexicographically via x+iy < u+iv if and only if x < u or (x = u and y < v), but this is not ordering by magnitude in any reasonable sense as it makes 1 greater than 100i. Ordering them by absolute magnitude yields a preorder in which all pairs are comparable, but this is not a partial order since 1 and i have the same absolute magnitude but are not equal, violating antisymmetry.
Mappings between partially ordered sets
Given two partially ordered sets (S,≤) and (T,≤), a function f: S → T is called orderpreserving, or monotone, or isotone, if for all x and y in S, x≤y implies f(x) ≤ f(y).
If (U,≤) is also a partially ordered set, and both f: S → T and g: T → U are orderpreserving, their composition (g∘f): S → U is orderpreserving, too.
A function f: S → T is called orderreflecting if for all x and y in S, f(x) ≤ f(y) implies x≤y.
If f is both is both orderpreserving and orderreflecting, then it is called an orderembedding of (S,≤) into (T,≤).
In the latter case, f is necessarily injective, since f(x) = f(y) implies x ≤ y and y ≤ x. If an orderembedding between two posets S and T exists, one says that S can be embedded into T. If an orderembedding f: S → T is bijective, it is called an order isomorphism, and the partial orders (S,≤) and (T,≤) are said to be isomorphic. Isomorphic orders have structurally similar Hasse diagrams (cf. right picture). It can be shown that if orderpreserving maps f: S → T and g: T → S exist such that g∘f and f∘g yields the identity function on S and T, respectively, then S and T are orderisomorphic.
^{[4]}
For example, a mapping f: ℕ → ℙ(ℕ) from the set of natural numbers (ordered by divisibility) to the power set of natural numbers (ordered by set inclusion) can be defined by taking each number to the set of its prime divisors. It is orderpreserving: if x divides y, then each prime divisor of x is also a prime divisor of y. However, it is neither injective (since it maps both 12 and 6 to {2,3}) nor orderreflecting (since besides 12 doesn't divide 6). Taking instead each number to the set of its prime power divisors defines a map g: ℕ → ℙ(ℕ) that is orderpreserving, orderreflecting, and hence an orderembedding. It is not an orderisomorphism (since it e.g. doesn't map any number to the set {4}), but it can be made one by restricting its codomain to g(ℕ). The right picture shows a subset of ℕ and its isomorphic image under g. The construction of such an orderisomophism into a power set can be generalized to a wide class of partial orders, called distributive lattices, see "Birkhoff's representation theorem".
Number of partial orders
Sequence OEIS gives the number of partial orders on a set of n labeled elements:
Number of nelement binary relations of different types

n 
all 
transitive 
reflexive 
preorder 
partial order 
total preorder 
total order 
equivalence relation

0 
1 
1 
1 
1 
1 
1 
1 
1

1 
2 
2 
1 
1 
1 
1 
1 
1

2 
16 
13 
4 
4 
3 
3 
2 
2

3 
512 
171 
64 
29 
19 
13 
6 
5

4 
65536 
3994 
4096 
355 
219 
75 
24 
15

OEIS 
A002416 
A006905 
A053763 
A000798 
A001035 
A000670 
A000142 
A000110

The number of strict partial orders is the same as that of partial orders.
If we count only OEIS).
Linear extension
A partial order ≤^{*} on a set X is an extension of another partial order ≤ on X provided that for all elements x and y of X, whenever $x\; \backslash leq\; y$, it is also the case that x ≤^{*} y. A linear extension is an extension that is also a linear (i.e., total) order. Every partial order can be extended to a total order (orderextension principle).^{[5]}
In computer science, algorithms for finding linear extensions of partial orders (represented as the reachability orders of directed acyclic graphs) are called topological sorting.
In category theory
Every poset (and every preorder) may be considered as a category in which every homset has at most one element. More explicitly, let hom(x, y) = {(x, y)} if x ≤ y (and otherwise the empty set) and (y, z)∘(x, y) = (x, z). Posets are equivalent to one another if and only if they are isomorphic. In a poset, the smallest element, if it exists, is an initial object, and the largest element, if it exists, is a terminal object. Also, every preordered set is equivalent to a poset. Finally, every subcategory of a poset is isomorphismclosed.
A functor from a poset category (a diagram indexed by a poset category) is a commutative diagram.
Partial orders in topological spaces
If P is a partially ordered set that has also been given the structure of a topological space, then it is customary to assume that {(a, b) : a ≤ b} is a closed subset of the topological product space $P\backslash times\; P$. Under this assumption partial order relations are well behaved at limits in the sense that if $a\_i\backslash to\; a$, $b\_i\backslash to\; b$ and a_{i} ≤ b_{i} for all i, then a ≤ b.^{[6]}
Interval
For a ≤ b, the closed interval Template:Closedclosed is the set of elements x satisfying a ≤ x ≤ b (i.e. a ≤ x and x ≤ b). It contains at least the elements a and b.
Using the corresponding strict relation "<", the open interval Template:Openopen is the set of elements x satisfying a < x < b (i.e. a < x and x < b). An open interval may be empty even if a < b. For example, the open interval Template:Openopen on the integers is empty since there are no integers i such that 1 < i < 2.
Sometimes the definitions are extended to allow a > b, in which case the interval is empty.
The halfopen intervals Template:Closedopen and Template:Openclosed are defined similarly.
A poset is locally finite if every interval is finite. For example, the integers are locally finite under their natural ordering. The lexicographical order on the cartesian product ℕ×ℕ is not locally finite, since e.g. (1,2)≤(1,3)≤(1,4)≤(1,5)≤...≤(2,1).
Using the interval notation, the property "a is covered by b" can be rephrased equivalently as [a,b] = {a,b}.
This concept of an interval in a partial order should not be confused with the particular class of partial orders known as the interval orders.
See also
Notes
References
External links
 OEIS
 A000112: Number of posets with n unlabeled elements in the OEIS
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.