World Library  
Flag as Inappropriate
Email this Article

Nephelinite

Article Id: WHEBN0000434161
Reproduction Date:

Title: Nephelinite  
Author: World Heritage Encyclopedia
Language: English
Subject: Igneous rock, Patrick Marshall, Deccan Traps, Volcanoes, Hawaiian eruption
Collection: Igneous Petrology, Volcanic Rocks
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Nephelinite

Nephelinite lava (grey) containing a xenolith of peridotite (yellow), Kaiserstuhl, Germany.

Nephelinite is a fine-grained or aphanitic igneous rock made up almost entirely of nepheline and clinopyroxene (variety augite). If olivine is present, the rock may be classified as an olivine nephelinite. Nephelinite is dark in color and may resemble basalt in hand specimen. However, basalt consists mostly of clinopyroxene (augite) and calcic plagioclase.

Basalt, alkali basalt, basanite, tephritic nephelinite, and nephelinite differ partly in the relative proportions of plagioclase and nepheline. Alkali basalt may contain minor nepheline and does contain nepheline in its CIPW normative mineralogy. A critical ratio in the classification of these rocks is the ratio nepheline/(nepheline plus plagioclase). Basanite has a value of this ratio between 0.1 and 0.6 and also contains more than 10% olivine. Tephritic nephelinite has a value between 0.6 and 0.9. Nephelinite has a value greater than 0.9. Le Maitre (2002) defines and discusses these and other criteria in the classification of igneous rocks.

Nephelinite is an example of a silica-undersaturated igneous rock. The degree of silica saturation can be evaluated with normative mineralogy calculated from chemical analyses, or with actual mineralogy for completely crystallized igneous rocks with equilibrated assemblages. Silica-oversaturated rocks contain quartz (or another silica polymorph). Silica-undersaturated mafic igneous rocks contain magnesian olivine but not magnesian orthopyroxene, and/or a feldspathoid. Silica-saturated igneous rocks fall in between these two classes.

Silica-undersaturated, mafic igneous rocks are much less abundant than silica-saturated and oversaturated basalts. Genesis of the less common mafic rocks such as nephelinite is usually ascribed to more than one of the following three causes:

  • relatively high pressure of melting;
  • relatively low degree of fractional melting in a mantle source;
  • relatively high dissolved carbon dioxide in the melt.

Nephelinites and similar rocks typically contain relatively high concentrations of elements such as the light rare earths, as consistent with a low degree of melting of mantle peridotite at depths sufficient to stabilize garnet. Nephelinites are also associated with carbonatite in some occurrences, consistent with source rocks relatively rich in carbon dioxide.

Nephelinite is found on ocean islands such as Oahu, although the rock type is very rare in the Hawaiian islands. It is found in a variety of continental settings. An example is the Hamada nephelinite lava flow in southwest Japan which occurred in the late Miocene age. Nephelinite is also associated with the highly alkalic volcanism of the Ol Doinyo Lengai volcanic field in Tanzania. Nyiragongo, another African volcano known for its semipermanent lava lake activity, erupts lava made of melilite nephelinite. The unusual chemical makeup of this igneous rock may be a factor in the unusual fluidity of its lavas.

Columnar jointing in melilite-olivine nephelinite from the Southern Balcones volcanic and intrusive rocks, Uvalde County, Texas.

Olivine nephelinite flows also occur in the Wells Gray-Clearwater volcanic field in east-central British Columbia and at Volcano Mountain in central Yukon Territory. Melilite olivine nephelinite intrusives of Cretaceous age are found in the area around Uvalde, Texas.

References

  • Roger W. Le Maitre (Editor), Igneous Rocks: A Classification and Glossary of Terms. (Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks). Cambridge University Press (2002). ISBN 0-521-66215-X
  • Hamada nephelinite, SW Japan
  • Oldoinyo Lengai
  • Volcanological and petrological evolution of Nyiragongo volcano, Virunga volcanic field, Zaire (now Democratic Republic of the Congo)
  • Argon40/Argon39 Geochronology of the Southern Balcones Volcanic Intrusive Rocks: USGS

External links

 

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.