World Library  
Flag as Inappropriate
Email this Article

Kaplan–Meier estimator

Article Id: WHEBN0003168650
Reproduction Date:

Title: Kaplan–Meier estimator  
Author: World Heritage Encyclopedia
Language: English
Subject: Survival analysis, Survival function, Randomized controlled trial, Actuarial science, Statistics
Collection: Actuarial Science, Estimation Theory, Reliability Engineering, Survival Analysis
Publisher: World Heritage Encyclopedia

Kaplan–Meier estimator

An example of a Kaplan–Meier plot for two conditions associated with patient survival.

The Kaplan–Meier estimator,[1][2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment. In other fields, Kaplan–Meier estimators may be used to measure the length of time people remain unemployed after a job loss,[3] the time-to-failure of machine parts, or how long fleshy fruits remain on plants before they are removed by frugivores. The estimator is named after Edward L. Kaplan and Paul Meier, who each submitted similar manuscripts to the Journal of the American Statistical Association. The journal editor, John Tukey, convinced them to combine their work into one paper, which has been cited about 34,000 times since its publication.[4]


  • Basic concepts 1
  • Formulation 2
  • Statistical considerations 3
  • Implementations in statistics packages 4
  • See also 5
  • References 6
  • Further reading 7
  • External links 8

Basic concepts

A plot of the Kaplan–Meier estimator is a series of declining horizontal steps which, with a large enough sample size, approaches the true survival function for that population. The value of the survival function between successive distinct sampled observations ("clicks") is assumed to be constant.

An important advantage of the Kaplan–Meier curve is that the method can take into account some types of censored data, particularly right-censoring, which occurs if a patient withdraws from a study, is lost to follow-up, or is alive without event occurrence at last follow-up. On the plot, small vertical tick-marks indicate individual patients whose survival times have been right-censored. When no truncation or censoring occurs, the Kaplan–Meier curve is the complement of the empirical distribution function.

In medical statistics, a typical application might involve grouping patients into categories, for instance, those with Gene A profile and those with Gene B profile. In the graph, patients with Gene B die much more quickly than those with gene A. After two years, about 80% of the Gene A patients survive, but less than half of patients with Gene B.

In order to generate a Kaplan–Meier estimator, at least two pieces of data are required for each patient (or each subject): the status at last observation (event occurrence or right-censored) and the time to event (or time to censoring). If the survival functions between two or more groups are to be compared, then a third piece of data is required: the group assignment of each subject.[5]


Let S(t) be the probability that a member from a given population will have a lifetime exceeding time, t. For a sample of size N from this population, let the observed times until death of the N sample members be

t_1 \le t_2 \le t_3 \le \cdots \le t_N.

Corresponding to each ti is ni, the number "at risk" just prior to time ti, and di, the number of deaths at time ti.

Note that the intervals between events are typically not uniform. For example, a small data set might begin with 10 cases. Suppose subject 1 dies on day 3, subjects 2 and 3 die on day 11 and subject 4 is lost to follow-up (censored) at day 9. Data up to day 11 would be as follows.

i 1 2
t_i 3 11
d_i 1 2
n_i 10 8

The Kaplan–Meier estimator is the nonparametric maximum likelihood estimate of S(t), where the maximum is taken over the set of all piecewise constant survival curves with breakpoints at the event times ti. It is a product of the form

\hat S(t) = \prod\limits_{t_i

When there is no censoring, ni is just the number of survivors just prior to time ti. With censoring, ni is the number of survivors minus the number of losses (censored cases). It is only those surviving cases that are still being observed (have not yet been censored) that are "at risk" of an (observed) death.[6]

There is an alternative definition that is sometimes used, namely

\hat S(t) = \prod\limits_{t_i \le t} \frac{n_i-d_i}{n_i}.

The two definitions differ only at the observed event times. The latter definition is right-continuous whereas the former definition is left-continuous.

Let T be the random variable that measures the time of failure and let F(t) be its cumulative distribution function. Note that

S(t) = P[T>t] = 1-P[T \le t] = 1-F(t). \,

Consequently, the right-continuous definition of \scriptstyle\hat S(t) may be preferred in order to make the estimate compatible with a right-continuous estimate of F(t).

Statistical considerations

The Kaplan–Meier estimator is a statistic, and several estimators are used to approximate its variance. One of the most common such estimators is Greenwood's formula:[7]

\widehat{\operatorname{Var}}( \widehat S(t) ) = \widehat S(t)^2 \sum\limits_{t_i\le t} \frac{d_i}{n_i(n_i-d_i)}.

In some cases, one may wish to compare different Kaplan–Meier curves. This may be done by several methods including:

Implementations in statistics packages

  • R: the Kaplan–Meier estimator is available as part of the survival package.[8][9][10]
  • Stata: the command sts returns the Kaplan–Meier estimator.[11]
  • Python: The lifelines package includes the Kaplan-Meier estimator [12]

See also


  1. ^ Kaplan, E. L.; Meier, P. (1958). "Nonparametric estimation from incomplete observations".  
  2. ^ Kaplan, E.L. in a retrospective on the seminal paper in "This week's citation classic". Current Contents 24, 14 (1983). Available from UPenn as PDF.
  3. ^ Meyer, Bruce D. (1990). "Unemployment Insurance and Unemployment Spells".  
  4. ^ "Paul Meier, 1924–2011". Chicago Tribune. August 18, 2011. 
  5. ^ Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW (2010). "A practical guide to understanding Kaplan–Meier curves.". Otolaryngol Head Neck Surg 143 (3): 331–6.  
  6. ^ Costella, John P. (2010). "A simple alternative to Kaplan–Meier for survival curves" (PDF). Unpublished. 
  7. ^  
  8. ^ "survival: Survival Analysis". R Project. 
  9. ^ Willekens, Frans (2014). Package"Survival"The . Multistate Analysis of Life Histories with R. Springer. pp. 135–153.  
  10. ^ Chen, Ding-Geng; Peace, Karl E. (2014). Clinical Trial Data Analysis Using R. CRC Press. pp. 99–108. 
  11. ^ "sts — Generate, graph, list, and test the survivor and cumulative hazard functions" (PDF). Stata Manual. 
  12. ^ "lifelines". .

Further reading

  • Aalen, Odd; Borgan, Ornulf; Gjessing, Hakon (2008). Survival and Event History Analysis: A Process Point of View. Springer. pp. 90–104.  
  • Jones, Andrew M.; Rice, Nigel; D'Uva, Teresa Bago; Balia, Silvia (2013). "Duration Data". Applied Health Economics. London: Routledge. pp. 139–181.  

External links

  • Calculating Kaplan–Meier curves by Steve Dunn
  • Kaplan–Meier Survival Curves and the Log-Rank Test
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.