World Library  
Flag as Inappropriate
Email this Article

Explosive eruption

Article Id: WHEBN0003051956
Reproduction Date:

Title: Explosive eruption  
Author: World Heritage Encyclopedia
Language: English
Subject: Types of volcanic eruptions, Kīlauea, Cascade Volcanoes, Effusive eruption, Volcano
Collection: Volcanic Eruption Types
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Explosive eruption

Mount Saint Helens explosive eruption on July 22, 1980

An explosive eruption is a volcanic term to describe a violent, explosive type of eruption. Mount St. Helens in 1980 was an example. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can send rocks, dust, gas and pyroclastic material up to 20 km into the atmosphere at rate of up to 100,000 tonnes per second, traveling at several hundred meters per second. This cloud will then collapse, creating a pyroclastic flow of hot volcanic matter.

Contents

  • Stages of an explosive eruption 1
    • Types of explosive eruption 1.1
    • Pyroclastic flows 1.2
  • Supervolcanoes 2
  • See also 3
  • References 4
  • External links 5

Stages of an explosive eruption

An early stage of the July 12, 2009 eruption of Sarychev volcano, seen from space

An explosive eruption always begins with some form of blockage in the crater of a volcano that prevents the release of gases trapped in highly viscous andesitic or rhyolitic magma. The high viscosity of these forms of magma prevents the release of trapped gases. When this type of magma flows towards the surface pressure builds, eventually causing the blockage to be blasted out in an explosive eruption. The pressure from the magma and gases are released through the weakest point in the cone, usually the crater. However, in the case of the eruption of Mount St. Helens, pressure was released through the side of the volcano, rather than the crater.[1]

The sudden release of pressure causes the gases in the magma to suddenly froth and create volcanic ash and pumice, which is then ejected through the volcanic vent to create the signature eruption column commonly associated with explosive eruptions. The size and duration of the column depends on the volume of magma being released and how much pressure the magma was under.

Types of explosive eruption

  1. Vulcanian eruption
  2. Peléan eruption
  3. Plinian eruption
  4. Phreatomagmatic eruption and Phreatic eruption
  5. Surtseyan eruption
  6. Pyroclastic flows

    Pyroclastic flows occur towards the end of an explosive eruption, as pressure begins to decline. The eruption column of ash is supported by pressure from the gases being released, and as the gases are depleted, pressure falls and the eruption column begins to collapse. When the column collapses in on itself, ash and rock fall back down to the ground and begin to flow down the slopes of the volcano. These flows can travel at up to 80 km per hour, and reach temperatures of 200° to 700° celsius. The high temperatures can cause combustion of any flammable materials in its path, including wood, vegetation, and buildings. When snow and ice melt as a part of an eruption, large amounts of water mixed in with the flow can create lahars. The risk of lahars is particularly high on volcanoes such as Mount Rainier near Seattle and Tacoma, Washington.[2]

    Supervolcanoes

    The eruption of supervolcanoes is the rarest of volcanic eruptions but also the most destructive. The timescale between these eruptions is generally marked by hundreds or thousands of years. This type of eruption generally causes destruction on a continental scale, and can also result in the lowering of temperatures worldwide.[3]

    See also

    References

    1. ^
    2. ^ http://volcanoes.usgs.gov/hazards/pyroclasticflow/index.php
    3. ^ Oppenheimer, C. (2011): Eruptions that shook the world. Cambridge University Press. ISBN 978-0-521-64112-8

    External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.