World Library  
Flag as Inappropriate
Email this Article

Exotoxin

Article Id: WHEBN0000503254
Reproduction Date:

Title: Exotoxin  
Author: World Heritage Encyclopedia
Language: English
Subject: Tetanospasmin, Staphylococcal scalded skin syndrome, Inoculation, Anthrax toxin, Pore-forming toxin
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Exotoxin

An exotoxin is a toxin secreted by bacteria.[1] An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host-pathogen interface.

They may exert their effect locally or produce systemic effects. Well-known exotoxins include: botulinum toxin produced by Clostridium botulinum; Corynebacterium diphtheriae toxin, produced during life-threatening symptoms of diphtheria; tetanospasmin produced by Clostridium tetani. The toxic properties of most exotoxins can be inactivated by heat or chemical treatment to produce a toxoid. These retain their antigenic specificity and can be used to produce antitoxins and, in the case of diphtheria and tetanus toxoids, are used as vaccines.

Exotoxins are susceptible to antibodies produced by the immune system, but many exotoxins are so toxic that they may be fatal to the host before the immune system has a chance to mount defenses against them. For this reason antitoxin, anti-serum containing antibodies, is injected to provide passive immunity.

Contents

  • Types 1
    • Type I: cell surface-active 1.1
      • Superantigens 1.1.1
      • Heat-stable enterotoxins 1.1.2
    • Type II: membrane damaging 1.2
      • Channel-forming toxins 1.2.1
      • Enzymatically active toxins 1.2.2
    • Type III: intracellular 1.3
      • By mode of entry 1.3.1
      • By mechanism 1.3.2
    • Extracellular matrix damage 1.4
  • See also 2
  • References 3
  • External links 4

Types

Many exotoxins have been categorized.[2][3] This classification, while fairly exhaustive, is not the only system used. Other systems for classifying or identifying toxins include:

  • By organism generating the toxin
  • By organism susceptible to the toxin
  • By tissue target type susceptible to the toxin (neurotoxins affect the nervous system, cardiotoxins affect the heart, etc.)
  • By structure (for example, AB5 toxin)
  • By the ability of the toxin to endure in hostile environments, such as heat, dryness, radiation, or salinity. In this context, "labile" implies susceptibility, and "stable" implies a lack of susceptibility.
  • By a letter, such as "A", "B", or "C", to communicate the order in which they were identified.

The same exotoxin may have different names, depending of the field of research.

Type I: cell surface-active

Type I toxins bind to a receptor on the cell surface and stimulate intracellular signaling pathways. Two examples are described below.

Superantigens

Superantigens are produced by several bacteria. The best-characterized superantigens are those produced by the strains of Staphylococcus aureus and Streptococcus pyogenes that cause toxic shock syndrome. Superantigens bridge the MHC class II protein on antigen-presenting cells with the T cell receptor on the surface of T cells with a particular Vβ chain. As a consequence, up to 50% of all T cells are activated, leading to massive secretion of proinflammatory cytokines, which produce the symptoms of toxic shock.

Heat-stable enterotoxins

Some strains of E. coli produce heat-stable enterotoxins (ST), which are small peptides that are able to withstand heat treatment at 100 °C. Different STs recognize distinct receptors on the cell surface and thereby affect different intracellular signaling pathways. For example, STa enterotoxins bind and activate membrane-bound guanylate cyclase, which leads to the intracellular accumulation of cyclic GMP and downstream effects on several signaling pathways. These events lead to the loss of electrolytes and water from intestinal cells.

Type II: membrane damaging

Membrane-damaging toxins exhibit hemolysin or cytolysin activity in vitro. However, induction of cell lysis may not be the primary function of the toxins during infection. At low concentrations of toxin, more subtle effects such as modulation of host cell signal transduction may be observed in the absence of cell lysis. Membrane-damaging toxins can be divided into two categories, the channel-forming toxins and toxins that function as enzymes that act on the membrane.

Channel-forming toxins

Most channel-forming toxins, which form pores in the target cell membrane, can be classified into two families: the cholesterol-dependent toxins and the RTX toxins.

  • Cholesterol-dependent cytolysins

Formation of pores by cholesterol-dependent cytolysins (CDC) requires the presence of cholesterol in the target cell. The size of the pores formed by members of this family is extremely large: 25-30 nm in diameter. All CDCs are secreted by the type II secretion system;[4] the exception is pneumolysin, which is released from the cytoplasm of Streptococcus pneumoniae when the bacteria lyse.

The CDCs Streptococcus pneumoniae Pneumolysin, Clostridium perfringens perfringolysin O, and Listeria monocytogenes listeriolysin O cause specific modifications of histones in the host cell nucleus, resulting in down-regulation of several genes that encode proteins involved in the inflammatory response.[5] Histone modification does not involve the pore-forming activity of the CDCs.

  • RTX toxins

RTX toxins can be identified by the presence of a specific tandemly repeated nine-amino acid residue sequence in the protein. The prototype member of the RTX toxin family is haemolysin A (HlyA) of E. coli. RTX is also found in Legionella pneumophila.[6]

Enzymatically active toxins

One example is the α toxin of C. perfringens, which causes gas gangrene; α toxin has phospholipase activity.

Type III: intracellular

Type III exotoxins can be classified by their mode of entry into the cell, or by their mechanism once inside.

By mode of entry

Intracellular toxins must be able to gain access to the cytoplasm of the target cell to exert their effects.

  • Some bacteria deliver toxins directly from their cytoplasm to the cytoplasm of the target cell through a needle-like structure. The effector proteins injected by the type III secretion apparatus of Yersinia into target cells are one example.
  • Another group of intracellular toxins is the AB toxins. The 'B'-subunit (binding) attaches to target regions on cell membranes, the 'A'-subunit (active) enters through the membrane and possesses enzymatic function that affects internal cellular bio-mechanisms. A common example of this A-subunit activity is called ADP-ribosylation in which the A-subunit catalyzes the addition of an ADP-ribose group onto specific residues on a protein. The structure of these toxins allows for the development of specific vaccines and treatments. Certain compounds can be attached to the B unit, which is not, in general, harmful, which the body learns to recognize, and which elicits an immune response. This allows the body to detect the harmful toxin if it is encountered later, and to eliminate it before it can cause harm to the host. Toxins of this type include cholera toxin, pertussis toxin, Shiga toxin and heat-liable enterotoxin from E. coli.

By mechanism

Once in the cell, many of the exotoxins act at the eukaryotic ribosomes (especially 60S), as protein synthesis inhibitors. (Ribosome structure is one of the most important differences between eukaryotes and prokaryotes, and, in a sense, these exotoxins are the bacterial equivalent of antibiotics such as clindamycin.)

  • Some exotoxins act directly at the ribosome to inhibit protein synthesis. An example is Shiga toxin.

Other intracellular toxins do not directly inhibit protein synthesis.

  • For example, Cholera toxin ADP-ribosylates, thereby activating tissue adenylate cyclase to increase the concentration of cAMP, which causes the movement of massive amounts of fluid and electrolytes from the lining of the small intestine and results in life-threatening diarrhea.

Extracellular matrix damage

These "toxins" allow the further spread of bacteria and, as a consequence, deeper tissue infections. Examples are

External links

  1. ^ Ray, editors, Kenneth J. Ryan, C. George (2010). Sherris medical microbiology (5th ed.). New York: McGraw Hill Medical.  
  2. ^ Desk Encyclopedia of Microbiology. Amsterdam: Elsevier Academic Press. 2004. p. 428.  
  3. ^ "Bacterial Pathogenesis: Bacterial Factors that Damage the Host - Producing Exotoxins". Retrieved 2008-12-13. 
  4. ^ Tweten RK (2005). "Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins". Infect. Immun. 73 (10): 6199–209.  
  5. ^ Hamon MA, Batsché E, Régnault B, et al. (2007). "Histone modifications induced by a family of bacterial toxins". Proc. Natl. Acad. Sci. U.S.A. 104 (33): 13467–72.  
  6. ^ D'Auria G, Jiménez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A (2008). "Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein". BMC Genomics 9: 14.  
  7. ^ Machunis-Masuoka E, Bauman RW, Tizard IR (2004). Microbiology. San Francisco: Pearson/Benjamin Cummings.  

References

See also

[7]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.