World Library  
Flag as Inappropriate
Email this Article

Dendrite (crystal)

Article Id: WHEBN0001568513
Reproduction Date:

Title: Dendrite (crystal)  
Author: World Heritage Encyclopedia
Language: English
Subject: Crystal growth, Brownian tree, Local oxidation nanolithography, Frost flower (sea ice), Crystals
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Dendrite (crystal)

Manganese dendrites on a limestone bedding plane from Solnhofen, Germany. Scale in mm.

A crystal dendrite is a crystal that develops with a typical multi-branching tree-like form. Dendritic crystal growth is very common and illustrated by snowflake formation and frost patterns on a window. Dendritic crystallization forms a natural fractal pattern. Dendritic crystals can grow into a supercooled pure liquid or form from growth instabilities that occur when the growth rate is limited by the rate of diffusion of solute atoms to the interface. In the latter case, there must be a concentration gradient from the supersaturated value in the solution to the concentration in equilibrium with the crystal at the surface. Any protuberance that develops is accompanied by a steeper concentration gradients at its tip. This increases the diffusion rate to the tip. In opposition to this is the action of the surface tension tending to flatten the protuberance and setting up a flux of solute atoms from the protuberance out to the sides. However, overall, the protuberance becomes amplified. This process occurs again and again until a dendrite is produced.

The term "dendrite" comes from the Greek word dendron, which means "tree".

Mineralogy and paleontology

Example of a dendrite on pyrolusite.

In paleontology, dendritic mineral crystal forms are often mistaken for fossils. These pseudofossils form as naturally occurring fissures in the rock are filled by percolating mineral solutions. They form when water rich in manganese and iron flows along fractures and bedding planes between layers of limestone and other rock types, depositing dendritic crystals as the solution flows through. A variety of manganese oxides and hydroxides are involved, including:

A three-dimensional form of dendrite develops in fissures in quartz, forming moss agate.

Crystallography and metallurgy

A silver crystal electrolytically refined with visible dendritic structures.

In chemistry, a dendrite is a crystal that branches into two parts during growth.

NASA microgravity experiment

Animated GIF of dendrite formation - NASA

The Isothermal Dendritic Growth Experiment (IDGE) is a materials science solidification experiment that researchers use on Space Shuttle missions to investigate dendritic growth in an environment where the effect of gravity (convection in the liquid) can be excluded. Dendritic solidification is one of the most common forms of solidifying metals and alloys. When materials crystallize or solidify under certain conditions, they freeze unstably, resulting in dendritic forms. Scientists are particularly interested in dendrite size, shape, and how the branches of the dendrites interact with each other. These characteristics largely determine the properties of the material.

See also

External links

  • Mindat Manganese Dendrites
  • What is a dendrite?
  • The Isothermal Dendritic Growth Experiment
  • Snow crystals
  • Dendritic Solidification
  • Dendritic growth in Local-Nonequilibrium Solidification Model
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.