This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0001937838 Reproduction Date:
A conotoxin is one of a group of neurotoxic peptides isolated from the venom of the marine cone snail, genus Conus.
Conotoxins, which are peptides consisting of 10 to 30 amino acid residues, typically have one or more disulfide bonds. Conotoxins have a variety of mechanisms of actions, most of which have not been determined. However, it appears that many of these peptides modulate the activity of ion channels.[1] Over the last few decades conotoxins have been subject of pharmacological interest.[2]
Conotoxins are hypervariable even within the same species; the genes that encode them do not act cone snails are under constant selective pressure to maintain polymorphism in these genes because failing to evolve and adapt will lead to extinction (Red Queen hypothesis).[6]
Types of conotoxins also differ in the number and pattern of disulfide bonds.[7] The disulfide bonding network, as well as specific amino acids in inter-cysteine loops, provide the specificity of conotoxins.[8]
The number of conotoxins whose activities have been determined so far is five, and they are called the α(alpha)-, δ(delta)-, κ(kappa)-, μ(mu)-, and ω(omega)- types. Each of the five types of conotoxins attacks a different target:
Alpha conotoxins have two types of cysteine arrangements,[16] and are competitive nicotinic acetylcholine receptor antagonists.
Omega, delta and kappa families of conotoxins have a knottin or inhibitor cystine knot scaffold. The knottin scaffold is a very special disulfide-through-disulfide knot, in which the III-VI disulfide bond crosses the macrocycle formed by two other disulfide bonds (I-IV and II-V) and the interconnecting backbone segments, where I-VI indicates the six cysteine residues starting from the N-terminus. The cysteine arrangements are the same for omega, delta and kappa families, even though omega conotoxins are calcium channel blockers, whereas delta conotoxins delay the inactivation of sodium channels, and kappa conotoxins are potassium channel blockers.[7]
Mu-conotoxins have two types of cysteine arrangements, but the knottin scaffold is not observed.[17] Mu-conotoxins target the muscle-specific voltage-gated sodium channels,[7] and are useful probes for investigating voltage-dependent sodium channels of excitable tissues.[17][18] Mu-conotoxins target the voltage-gated sodium channels, preferentially those of skeletal muscle,[19] and are useful probes for investigating voltage-dependent sodium channels of excitable tissues.[20]
Different subtypes of voltage-gated sodium channels are found in different tissues in mammals, e.g., in muscle and brain, and studies have been carried out to determine the sensitivity and specificity of the mu-conotoxins for the different isoforms.[21]
A database for conopeptide sequences and structures
This article incorporates text from the public domain Pfam and InterPro IPR004214 This article incorporates text from the public domain Pfam and InterPro IPR008036
Wellcome Trust, Merops, Research center, European Bioinformatics Institute, Multiple sequence alignment
Panther, Pfam, European Bioinformatics Institute, Public domain, Perl
Protein structure, Lipid bilayer, Protein Data Bank, Research center, Proteins
University College London, Research center, European Bioinformatics Institute, Author, Pfam
Creative Commons, Free software, Intellectual property, Copyright, Orphan works
Bacteria, Saxitoxin, Conotoxin, Carbon, Hydrogen
Tetrodotoxin, Conotoxin, Pain, Thoracic diaphragm, Fish
Neuroscience, Lead, Tetrodotoxin, Brain, Botulinum toxin
Lidocaine, Quinidine, Psychology, Local anesthetic, Psychiatry
Verapamil, Diltiazem, Calcium, Hypertension, N-type calcium channel