World Library  
Flag as Inappropriate
Email this Article

Coma (optics)

Article Id: WHEBN0000583405
Reproduction Date:

Title: Coma (optics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Optical aberration, Ritchey–Chrétien telescope, Schmidt–Newton telescope, Photographic lens design, Chromatic aberration
Publisher: World Heritage Encyclopedia

Coma (optics)

Optical aberration

Spherical aberration
Petzval field curvature
Chromatic aberration

Coma of a single lens

In optics (especially telescopes), the coma, or comatic aberration, in an optical system refers to aberration inherent to certain optical designs or due to imperfection in the lens or other components that results in off-axis point sources such as stars appearing distorted, appearing to have a tail (coma) like a comet. Specifically, coma is defined as a variation in magnification over the entrance pupil. In refractive or diffractive optical systems, especially those imaging a wide spectral range, coma can be a function of wavelength, in which case it is a form of chromatic aberration.

Coma is an inherent property of telescopes using parabolic mirrors. Unlike a spherical mirror, a bundle of parallel rays parallel to the optical axis will be perfectly focused to a point (the mirror is free of spherical aberration), no matter where they strike the mirror. However, this is only true if the rays are parallel to the axis of the parabola. When the incoming rays strike the mirror at an angle, individual rays are not reflected to the same point. When looking at a point that is not perfectly aligned with the optical axis, some of the incoming light from that point will strike the mirror at an angle. This results in an image that is not in the center of the field looking wedge-shaped. The further off-axis (or the greater the angle subtended by the point with the optical axis), the worse this effect is. This causes stars to appear to have a cometary coma, hence the name.[2]

Schemes to reduce spherical aberration without introducing coma include Schmidt, Maksutov, ACF and Ritchey-Chrétien optical systems. Correction lenses for Newtonian reflectors have been designed which reduce coma in telescopes below f/6. These work by means of a dual lens system of a plano-convex and a plano-concave lens fitted into an eyepiece adaptor which superficially resembles a Barlow lens.[1][2]

Coma of a single lens or a system of lenses can be minimized (and in some cases eliminated) by choosing the curvature of the lens surfaces to match the application. Lenses in which both spherical aberration and coma are minimized at a single wavelength are called bestform or aplanatic lenses.

Vertical coma is the most common higher-order aberration in the eyes of patients with keratoconus.[3] Coma is also a common temporary symptom of corneal injuries or abrasions, in which case the visual defect gradually resolves as the cornea heals.

This is a comparison of the coma in an uncorrected f/3.9 Newtonian telescope versus the effects of coma with the Baader Rowe Coma Corrector.

See also


  1. ^ US a coma-correcting meniscus lens 4571036, Gebelein, Rolin J. & David Shafer, "Reflecting telescope with correcting lens", published 02/18/1986 
  2. ^ Knisely, David (2004). "Tele Vue Paracor Coma Corrector for Newtonians" (pdf). Cloudy Nights Telescope Review. Retrieved 29 November 2010. 
  3. ^ Pantanelli S, MacRae S, Jeong TM, Yoon G (November 2007). "Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor".  

External links

  • About coma in a Newtonian telescope
  • Coma Aberration in Youtube
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.