World Library  
Flag as Inappropriate
Email this Article

Biomechanics

Article Id: WHEBN0000105355
Reproduction Date:

Title: Biomechanics  
Author: World Heritage Encyclopedia
Language: English
Subject: Silas D. Alben, Biology, Sports biomechanics, Biomedical engineering, Biophysics
Collection: Biomechanics, Motor Control
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Biomechanics

Page of one of the first works of Biomechanics (De Motu Animalium of Giovanni Alfonso Borelli) in the 17th century

Biomechanics is the study of the structure and function of biological systems such as cells[1] by means of the methods of mechanics.[2]

Contents

  • Word history 1
  • Method 2
  • Subfields 3
    • Sports biomechanics 3.1
    • Continuum biomechanics 3.2
    • Biofluid mechanics 3.3
    • Biotribology 3.4
    • Comparative biomechanics 3.5
    • Plant biomechanics 3.6
    • Computational biomechanics 3.7
    • Injury Biomechanics 3.8
  • History 4
    • Antiquity 4.1
    • Renaissance 4.2
    • Industrial era 4.3
  • Applications 5
  • See also 6
  • References 7
  • Further reading 8
  • External links 9

Word history

The word "biomechanics" (1899) and the related "biomechanical" (1856) from the

  • Biomechanics and Movement Science Listserver (Biomch-L)
  • Biomechanics Links
  • A Genealogy of Biomechanics

External links

Further reading

  1. ^ R. McNeill Alexander (2005) Mechanics of animal movement, Current Biology Volume 15, Issue 16, 23 August 2005, Pages R616-R619.
  2. ^
  3. ^ Oxford English Dictionary, Third Edition, November 2010, s.vv.
  4. ^
  5. ^
  6. ^ a b Fung 1993
  7. ^
  8. ^ Whitney, G. A., Jayaraman, K., Dennis, J. E. and Mansour, J. M. (2014), Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling. J Tissue Eng Regen Med. doi: 10.1002/term.1925
  9. ^
  10. ^ Tsouknidas, A., Savvakis, S., Asaniotis, Y., Anagnostidis, K., Lontos, A., Michailidis, N. (2013) The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment. Clinical Biomechanics 28 (9-10), pp. 949-955.
  11. ^
  12. ^
  13. ^ a b
  14. ^
  15. ^
  16. ^ Whitney, G. A., Jayaraman, K., Dennis, J. E. and Mansour, J. M. (2014), Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling. J Tissue Eng Regen Med. doi: 10.1002/term.1925
  17. ^ Basmajian, J.V, & DeLuca, C.J. (1985) Muscles Alive: Their Functions Revealed, Fifth edition. Williams & Wilkins Publ.
  18. ^ Whitney, G. A., Jayaraman, K., Dennis, J. E. and Mansour, J. M. (2014), Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling. J Tissue Eng Regen Med. doi: 10.1002/term.1925

References

See also

Biomechanics is widely used in orthopedic industry to design orthopedic implants for human joints, dental parts, external fixations and other medical purposes. Biotribology is a very important part of it. It is a study of the performance and function of biomaterials used for orthopedic implants. It plays a vital role to improve the design and produce successful biomaterials for medical and clinical purposes. One such example is in tissue engineered cartilage.[18]

Biomechanics is also applied to studying human musculoskeletal systems. Such research utilizes force platforms to study human ground reaction forces and infrared videography to capture the trajectories of markers attached to the human body to study human 3D motion. Research also applies electromyography[17] (EMG) system to study the muscle activation. By this, it is feasible to investigate the muscle responses to the external forces as well as perturbations.

The study of biomechanics ranges from the inner workings of a cell to the movement and development of human beings is a core part of kinesiology. As we develop a greater understanding of the physiological behavior of living tissues, researchers are able to advance the field of tissue engineering, as well as develop improved treatments for a wide array of pathologies.

Applications

In the 19th century Étienne-Jules Marey used cinematography to scientifically investigate locomotion. He opened the field of modern 'motion analysis' by being the first to correlate ground reaction forces with movement. In Germany, the brothers Ernst Heinrich Weber and Wilhelm Eduard Weber hypothesized a great deal about human gait, but it was Christian Wilhelm Braune who significantly advanced the science using recent advances in engineering mechanics. During the same period, the engineering mechanics of materials began to flourish in France and Germany under the demands of the industrial revolution. This led to the rebirth of bone biomechanics when the railroad engineer Karl Culmann and the anatomist Hermann von Meyer compared the stress patterns in a human femur with those in a similarly shaped crane. Inspired by this finding Julius Wolff proposed the famous Wolff's law of bone remodeling.[15]

Industrial era

In the 16th century, Descartes suggested a philosophic system whereby all living systems, including the human body (but not the soul), are simply machines ruled by the same mechanical laws, an idea that did much to promote and sustain biomechanical study. Giovanni Alfonso Borelli embraced this idea and studied walking, running, jumping, the flight of birds, the swimming of fish, and even the piston action of the heart within a mechanical framework. He could determine the position of the human center of gravity, calculate and measured inspired and expired air volumes, and showed that inspiration is muscle-driven and expiration is due to tissue elasticity. Borelli was the first to understand that the levers of the musculoskeletal system magnify motion rather than force, so that muscles must produce much larger forces than those resisting the motion. Influenced by the work of Galileo, whom he personally knew, he had an intuitive understanding of static equilibrium in various joints of the human body well before Newton published the laws of motion.[14]

Galileo Galilei was interested in the strength of bones and suggested that bones are hollow because this affords maximum strength with minimum weight. He noted that animals' bone masses increased disproportionately to their size. Consequently, bones must also increase disproportionately in girth rather than mere size. This is because the bending strength of a tubular structure (such as a bone) is much more efficient relative to its weight. Mason suggests that this insight was one of the first grasps of the principles of biological optimization.[13]

Leonardo da Vinci studied anatomy in the context of mechanics. He analyzed muscle forces as acting along lines connecting origins and insertions, and studied joint function. Da Vinci tended to mimic some animal features in his machines. For example, he studied the flight of birds to find means by which humans could fly; and because horses were the principal source of mechanical power in that time, he studied their muscular systems to design machines that would better benefit from the forces applied by this animal.[13]

Renaissance

Aristotle wrote the first book on the motion of animals, De Motu Animalium, or On the Movement of Animals.[11] He not only saw animals' bodies as mechanical systems, but pursued questions such as the physiological difference between imagining performing an action and actually doing it.[12] In another work, On the Parts of Animals, he provided an accurate description of how the ureter uses peristalsis to carry blood from the kidneys to the bladder.[6]:2

Antiquity

History

Injury Biomechanics

Over the past decade the Finite element method has become an established alternative to in vivo surgical assessment. The main advantage of Computational Biomechanics lies in its ability to determine the endo-anatomical response of an anatomy, without being subject to ethical restrictions.[10] This has led FE modelling to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy (e.g. BioSpine).

Computational biomechanics

The application of biomechanical principles to plants and plant organs has developed into the subfield of plant biomechanics.[9]

Plant biomechanics

Comparative biomechanics overlaps strongly with many other fields, including biomimetics, which looks to nature for solutions to engineering problems.

Comparative biomechanics is the application of biomechanics to non-human organisms, whether used to gain greater insights into humans (as in fitness and impose high mechanical demands. Animal locomotion, has many manifestations, including running, jumping and flying. Locomotion requires energy to overcome friction, drag, inertia, and gravity, though which factor predominates varies with environment.

Chinstrap penguin leaping over water

Comparative biomechanics

The main aspects of Contact mechanics & tribology are related to friction, wear and lubrication. When the two surfaces come in contact during motion i.e. rub against each other, friction, wear and lubrication effects are very important to analyze in order to determine the performance of the material. Biotribology is a study of friction, wear and lubrication of biological systems especially human joints such as hips and knees. For example, femoral and tibial components of knee implant routinely rub against each other during daily activity such as walking or stair climbing. If the performance of tibial component needs to be analyzed, the principles of biotribology are used to determine the wear performance of the implant and lubrication effects of synovial fluid. In addition, the theory of contact mechanics also becomes very important for wear analysis. Additional aspects of biotribology can also include analysis of subsurface damage resulting from two surfaces coming in contact during motion, i.e. rubbing against each other, such as in the evaluation of tissue engineered cartilage.[8]

Biotribology

An example of a gaseous biofluids problem is that of human respiration. Recently, respiratory systems in insects have been studied for bioinspiration for designing improved microfluidic devices.[7]

Biological fluid mechanics, or biofluid mechanics, is the study of both gas and liquid fluid flows in or around biological organisms. An often studied liquid biofluids problem is that of blood flow in the human cardiovascular system. Under certain mathematical circumstances, blood flow can be modelled by the Navier–Stokes equations. In vivo whole blood is assumed to be an incompressible Newtonian fluid. However, this assumption fails when considering forward flow within arterioles. At the microscopic scale, the effects of individual red blood cells become significant, and whole blood can no longer be modelled as a continuum. When the diameter of the blood vessel is just slightly larger than the diameter of the red blood cell the Fahraeus–Lindquist effect occurs and there is a decrease in wall shear stress. However, as the diameter of the blood vessel decreases further, the red blood cells have to squeeze through the vessel and often can only pass in single file. In this case, the inverse Fahraeus–Lindquist effect occurs and the wall shear stress increases.

Biofluid mechanics

Biomaterials are classified in two groups, hard and soft tissues. Mechanical deformation of hard tissues (like wood, shell and bone) may be analysed with the theory of linear elasticity. On the other hand, soft tissues (like skin, tendon, muscle and cartilage) usually undergo large deformations and thus their analysis rely on the finite strain theory and computer simulations. The interest in continuum biomechanics is spurred by the need for realism in the development of medical simulation.[6]:568

The mechanical analysis of organ levels.

Continuum biomechanics

Biomechanics in sports can be stated as the muscular, joint and skeletal actions of the body during the execution of a given task, skill and/or technique. Proper understanding of biomechanics relating to sports skill has the greatest implications on: sport's performance, rehabilitation and injury prevention, along with sport mastery. As noted by Doctor Michael Yessis, one could say that best athlete is the one that executes his or her skill the best.[5]

In sports biomechanics, the laws of mechanics are applied to human movement in order to gain a greater understanding of athletic performance and to reduce sport injuries as well. It focuses on the application of the scientific principles of mechanical physics to understand movements of action of human bodies and sports implements such as cricket bat, hockey stick and javelin etc. Elements of mechanical engineering (e.g., strain gauges), electrical engineering (e.g., digital filtering), computer science (e.g., numerical methods), gait analysis (e.g., force platforms), and clinical neurophysiology (e.g., surface EMG) are common methods used in sports biomechanics.[4]

Sports biomechanics

Applied subfields of biomechanics include:

Subfields

Usually biological systems are much more complex than man-built systems. Numerical methods are hence applied in almost every biomechanical study. Research is done in an iterative process of hypothesis and verification, including several steps of modeling, computer simulation and experimental measurements.

Biomechanics is closely related to engineering, because it often uses traditional engineering sciences to analyze biological systems. Some simple applications of Newtonian mechanics and/or materials sciences can supply correct approximations to the mechanics of many biological systems. Applied mechanics, most notably mechanical engineering disciplines such as continuum mechanics, mechanism analysis, structural analysis, kinematics and dynamics play prominent roles in the study of biomechanics.

Method

[3]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.