World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003134457
Reproduction Date:

Title: Amatoxin  
Author: World Heritage Encyclopedia
Language: English
Subject: List of deadly fungi, Phallotoxin, Amanita virosa, Phalloidin, Amanita gemmata
Publisher: World Heritage Encyclopedia


Amatoxins are a subgroup of at least eight toxic compounds found in several genera of poisonous mushrooms, most notably Amanita phalloides and several other members of the genus Amanita, as well as some Conocybe, Galerina and Lepiota mushroom species.


  • Structure 1
  • Mechanism 2
  • Symptoms of exposure 3
  • Physiological mechanism of action 4
  • Treatment 5
  • Detection 6
  • Mushroom Species 7
  • See also 8
  • References 9


The compounds have a similar structure, that of eight amino-acid residues arranged in a conserved macrobicyclic motif (an overall pentacyclic structure when counting the rings inherent in the proline and tryptophan-derived residues); they were isolated in 1941 by Heinrich O. Wieland and Rudolf Hallermayer.[1] All amatoxins are oligopeptides that are synthesized as 35-amino-acid proproteins, from which the final eight amino acids are cleaved by a prolyl oligopeptidase.[2]

The backbone structure (black) is the same in all the amatoxins and five variable groups (red) determine the specific compound.

There are currently ten known amatoxins:[3]

Name R1 R2 R3 R4 R5
α-Amanitin OH OH NH2 OH OH
β-Amanitin OH OH OH OH OH
γ-Amanitin H OH NH2 OH OH
ε-Amanitin H OH OH OH OH
Amanullin H H NH2 OH OH
Amanullinic acid H H OH OH OH
Amaninamide OH OH NH2 H OH
Amanin OH OH OH H OH
Proamanullin H H NH2 OH H

δ-Amanitin has been reported, but its chemical structure has not been determined.


Amatoxins are potent and selective inhibitors of [5]

α-Amanitin (red) bound to RNA polymerase II from Saccharomyces cerevisiae (brewer's yeast). From ​.[6]

Shown to the right is the crystal structure of RNA Polymerase II from brewers yeast in complex with the amotoxin alpha-amanatin was captured and solved by Dr. Bushnell et al.,[6] From this crystal structure, it has been determined that alpha-amanitin primarily affects the bridge helix of the RNA pol II complex. The bridge helix is a highly conserved domain of RNA polymerase which is 35 amino acids long. At the N-terminus and the C-terminus of this region there are hinge structures that undergo significant conformational changes throughout the nucleotide addition cycle, and are essential for its progression.[7] One of the many roles of the bridge helix, is facilitating the translocation of DNA.[8] Alpha-amanitin binds to the bridge helix of the RNA Pol II complex and it also binds to part of the complex that is adjacent to the bridge helix, while it is in one specific conformation. This binding locks the bridge helix into place, dramatically slowing its movement in translocating the DNA.[6] The rate of pol II translocation of DNA is reduced from several thousand to a few nucleotides per minute.[9][10]

Symptoms of exposure

Upon exposure to amatoxins, the kidneys and the heart. More specifically, exposure to amotoxins may cause irritation of the respiratory tract, headache, dizziness, nausea, shortness of breath, coughing, insomnia, diarrhea, gastrointestinal disturbances, back pain, urinary frequency, liver and kidney damage, or death if ingested or inhaled. For example, If β-amanitin comes in contact with skin, it may cause irritation, burns, redness, severe pain, and could be absorbed through the skin, causing similar effects to exposure via inhalation and ingestion. Contact with the eyes may result in irritation, corneal burns, and eye damage. Persons with pre-existing skin, eye, or central nervous systems disorders, impaired liver, kidney, or pulmonary function may be more susceptible to the effects of this substance.[11]

The estimated minimum lethal dose is 0.1 mg/kg or 7 mg of toxin in adults. Their swift intestinal absorption coupled with their thermostability leads to rapid development of toxic effects in a relatively short period of time. The most severe effects are toxic hepatitis with centrolobular necrosis and hepatic steatosis, as well as acute tubulointerstitial nephropathy, which altogether induce a severe hepatorenal syndrome.

Physiological mechanism of action

Amatoxins are able to travel through the bloodstream to reach the organs in the body. While these compounds can damage many organs, damage to the liver and heart result in fatalities. At the molecular level, amatoxins cause damage to cells of these organs by causing perforations in the plasma membranes resulting in misplaced organelles that are normally in the cytoplasm to be found in the extracellular matrix.[12] beta-Amanitin is also an inhibitor of eukaryotic RNA polymerase II and RNA polymerase III, and as a result, mammalian protein synthesis. It has not been found to inhibit RNA polymerase I or bacterial RNA polymerase.[13] Because it inactivates the RNA polymerases, the liver is unable to repair the damage that beta-amanitin causes and the cells of the liver disintegrate and the liver dissolves.[14]


Treatment involves high dose penicillin as well as supportive care in cases of hepatic and renal injury. Silibinin, a product found in milk thistle, is a potential antidote to amatoxin poisoning, although more data needs to be collected. Cautious attention is given to maintaining hemodynamic stability, although if hepatorenal syndrome has developed the prognosis is guarded at best.[15]


Presence of amatoxins in mushroom samples may be detected by the Meixner Test (also known as the Wieland Test). The amatoxins may be quantitated in plasma or urine using chromatographic techniques to confirm a diagnosis of poisoning in hospitalized patients and in postmortem tissues to aid in a medicolegal investigation of a suspected fatal overdosage.[16]

Mushroom Species

Amatoxin-containing mushroom species from the genera Amanita, Galerina and Lepiota.[17]
Amanita species Galerina species Lepiota species
Amanita phalloides Galerina badipes Lepiota brunneoincarnata
Amanita bisporigera Galerina beinrothii Lepiota brunneolilacea
Amanita decipiens Galerina fasciculate Lepiota castanea
Amanita hygroscopica Galerina helvoliceps Lepiota clypeolaria
Amanita ocreata Galerina marginata Lepiota clypeolarioides
Amanita suballiacea Galerina sulciceps Lepiota felina
Amanita tenuifolia Galerina unicolor Lepiota fulvella
Amanita verna Galerina venenata Lepiota fuscovinacea
Amanita virosa Lepiota griseovirens
Lepiota heimii
Lepiota helveoloides
Lepiota kuehneri
Lepiota langei
Lepiota lilacea
Lepiota locanensis
Lepiota ochraceofulva
Lepiota pseudohelveola
Lepiota pseudolilacea
Lepiota rufescens
Lepiota subincarnata
Lepiota xanthophylla

See also


  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^ a b c
  7. ^
  8. ^
  9. ^
  10. ^
  11. ^ "Material Safety Data Sheet for beta Amanitin", Retrieved on 12 March 2013.
  12. ^
  13. ^ "β-Amanitin from Amanita phalloides", Retrieved on 12 March 2013.
  14. ^ "Polypeptide Toxins in Amanita Mushrooms", “Cornell University”, Retrieved on 12 March 2013.
  15. ^
  16. ^ R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 52–54.
  17. ^

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.