World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0002706406
Reproduction Date:

Title: Rhombohedron  
Author: World Heritage Encyclopedia
Language: English
Subject: Trigonal trapezohedron, Zonohedron, Parallelepiped, Cube, List of polygons, polyhedra and polytopes
Collection: Prismatoid Polyhedra, Space-Filling Polyhedra, Zonohedra
Publisher: World Heritage Encyclopedia


Type Prism
Faces 6 rhombi
Edges 12
Vertices 8
Symmetry group Ci, [2+,2+], (×), Order 2
Properties convex, zonohedron

In geometry, a rhombohedron is a three-dimensional figure like a cube, except that its faces are not squares but rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells.

In general the rhombohedron can have three types of rhombic faces in congruent opposite pairs, Ci symmetry, order 2.

Four points forming non-adjacent vertices of a rhombohedron necessarily form the four vertices of an orthocentric tetrahedron, and all orthocentric tetrahedra can be formed in this way.[1]


  • Rhombohedral lattice system 1
  • Special cases 2
  • References 3
  • External links 4

Rhombohedral lattice system

The rhombohedral lattice system has rhombohedral cells, with 3 pairs of unique rhombic faces:

Special cases

Form Cube Trigonal trapezohedron Right rhombic prism General rhombic prism General rhombohedron
Symmetry Oh, [4,3], order 48 D3d, [2+,6], order 12 D2h, [2,2], order 8 C2h, [2], order 4 Ci, [2+,2+], order 2
Faces 6 squares 6 identical rhombi Two rhombi and 4 squares 6 rhombic faces 6 rhombic faces
  • Cube: with Oh symmetry, order 48. All faces are squares.
  • Trigonal trapezohedron: with D3d symmetry, order 12. If all of the non-obtuse internal angles of the faces are equal (all faces are same). This can be see by stretching a cube on its body-digonal axis. For example a regular octahedron with two tetrahedra attached on opposite faces constructs a 60 degree trigonal trapezohedron:.
  • Right rhombic prism: with D2h symmetry, order 8. It constructed by two rhombi and 4 squares. This can be see by stretching a cube on its face-digonal axis. For example two triangular prisms attached together makes a 60 degree rhombic prism.
  • A general rhombic prism: With C2h symmetry, order 4. It has only one plane of symmetry through four vertices, and 6 rhombic faces.


  1. ^  .

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.