World Library  
Flag as Inappropriate
Email this Article

Mylonite

Article Id: WHEBN0003090712
Reproduction Date:

Title: Mylonite  
Author: World Heritage Encyclopedia
Language: English
Subject: Shear (geology), Porphyroclast, Outburst (mining), Foumban Shear Zone, Metamorphic core complex
Collection: Metamorphic Rocks, Structural Geology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Mylonite

Mylonite is a fine-grained, compact rock produced by dynamic recrystallization of the constituent minerals resulting in a reduction of the grain size of the rock. It is classified as a metamorphic rock. Mylonites can have many different mineralogical compositions; it is a classification based on the textural appearance of the rock.

Contents

  • Formation 1
  • Classification 2
  • Interpretation 3
  • References 4

Formation

Mylonites are ductilely deformed rocks formed by the accumulation of large shear strain, in ductile fault zones. There are many different views on the formation of mylonites, but it is generally agreed that crystal-plastic deformation must have occurred, and that fracturing and cataclastic flow are secondary processes in the formation of mylonites. Mechanical abrasion of grains by milling does not occur, although this was originally thought to be the process that formed mylonites, which were named from the Greek μύλος mylos, meaning mill.[1]

There are many different subgrain boundaries. As more dislocations are added to subgrain boundaries, the misorientation across that subgrain boundary will increase until the boundary becomes a high-angle boundary and the subgrain effectively becomes a new grain. This process, sometimes referred to as subgrain rotation recrystallization,[2] acts to reduce the mean grain size. Volume and grain-boundary diffusion, the critical mechanisms in diffusion creep, become important at high temperatures and small grain sizes. Thus some researchers have argued that as mylonites are formed by dislocation creep and dynamic recrystallization, a transition to diffusion creep can occur once the grain size is reduced sufficiently.

Mylonites generally develop in ductile shear zones where high rates of strain are focused. They are the deep crustal counterparts to cataclastic brittle faults that create fault breccias.[3]

Classification

  • Blastomylonites are coarse grained, often sugary in appearance without distinct tectonic banding.
  • Ultramylonites usually have undergone extreme grainsize reduction. In structural geology, ultramylonite is a kind of mylonite defined by modal percentage of matrix grains more than 90% (Sibson, 1977). Ultramylonite is often hard, dark, cherty to flinty in appearance and sometimes resemble pseudotachylite and obsidian. In reverse, ultramylonite-like rocks are sometimes "deformed pseudotachylyte" (Passchier 1982; White 1996; Takagi et al., 2000; Ueda et al., 2008).
  • Phyllonites are phyllosilicate(e.g. chlorite or mica)-rich mylonites. They typically have a well-developed secondary shear (C') fabric.

Interpretation

Determining the displacements that occur in mylonite zones depends on correctly determining the orientations of the finite strain axis and inferring how those orientations change with respect to the incremental strain axis. This is referred to as determining the shear sense. It is common practice to assume that the deformation is plane strain simple shear deformation. This type of strain field assumes that deformation occurs in a tabular zone where displacement is parallel to the shear zone boundary. Furthermore, during deformation the incremental strain axis maintains a 45 degree angle to the shear zone boundary. The finite strain axes are initially parallel to the incremental axis, but rotate away during progressive deformation.

Kinematic indicators are structures in mylonites that allow the sense of shear to be determined. Most kinematic indicators are based on deformation in simple shear and infer sense of rotation of the finite strain axes with respect to the incremental strain axes. Because of the constraints imposed by simple shear, displacement is assumed to occur in the foliation plane in a direction parallel to the mineral stretching lineation. Therefore, a plane parallel to the lineation and perpendicular to the foliation is viewed to determine the shear sense.

The most common shear sense indicators are C/S fabrics, asymmetric porphyroclasts, vein and dike arrays, mantled porphyroclasts and mineral fibers. All of these indicators have a monoclinic symmetry which is directly related to the orientations of the finite strain axes. Although structures like asymmetric folds and boudinages are also related to the orientations of the finite strain axes, these structures can form from distinct strain paths and are not reliable kinematic indicators.

References

  1. ^ Lapworth, C. 1885. Nature, 32, 558-559.
  2. ^ Dynamic recrystallization of minerals J. L. Urai, W. D. Means & G. S. Lister http://www.ged.rwth-aachen.de/Ww/projects/rexx/Urai+86Recrystallization/Urai+86Recrystallization5.htm
  3. ^ Sibson, R.H. 1977. Fault rocks and fault mechanisms, Journal Geological Society, 133, 191-213
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.