This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0027804151 Reproduction Date:
List of submarine topographical features, oceanic landforms and topographic elements.
An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between 3,000 meters (9,800 ft) and 6,000 meters (20,000 ft). Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains are among the flattest, smoothest and least explored regions on Earth.[1] Abyssal plains are key geologic elements of oceanic basins (the other elements being an elevated mid-ocean ridge and flanking abyssal hills). In addition to these elements, active oceanic basins (those that are associated with a moving plate tectonic boundary) also typically include an oceanic trench and a subduction zone. Though they cover more than 50% of the Earth’s surface,[2][3] they are poorly preserved in the sedimentary record because they tend to be consumed by the subduction process.[1]
The abyssal plain is formed when the lower oceanic crust is melted and forced upwards by the asthenosphere layer of the upper mantle. As this basaltic material reaches the surface at mid-ocean ridges, it forms new oceanic crust. Abyssal plains result from the blanketing of an originally uneven surface of oceanic crust by fine-grained sediments, mainly clay and silt. Much of this sediment is deposited from turbidity currents that have been channeled from the continental margins along submarine canyons down into deeper water. The remainder of the sediment is composed chiefly of pelagic sediments.
Use of a continuously recording fathometer enabled Tolstoy & Ewing in the summer of 1947 to identify and describe the first abyssal plain.[1][4] This plain, located to the south of Newfoundland, is now known as the Sohm Abyssal Plain.[4] Following this discovery many other examples were found in all the oceans.[5][6][7][8][9]
Oceanic trenches are long, narrow topographic depressions of the seabed. They are the deepest parts of the ocean floor, and they define one of the most important natural boundaries on the Earth's solid surface: the one between two lithospheric plates. Trenches are a distinctive morphological feature of plate boundaries.
There are three types of lithospheric plate boundaries: 1.) divergent (where lithosphere and oceanic crust is created at mid-ocean ridges), 2.) convergent (where one lithospheric plate sinks beneath another and returns to the mantle), and 3.) transform (where two lithospheric plates slide past each other).
An oceanic trench is a type of convergent boundary at which two oceanic lithospheric slabs meet; the older (and therefore denser) of these slabs flexes and subducts beneath the other slab. Oceanic lithosphere moves into trenches at a global rate of about a tenth of a square meter per second. Trenches are generally parallel to a volcanic island arc, and about 200 km from a volcanic arc. Oceanic trenches typically extend 3 to 4 km (1.9 to 2.5 mi) below the level of the surrounding oceanic floor. The greatest ocean depth to be sounded is in the Challenger Deep of the Mariana Trench, at a depth of 10,911 m (35,798 ft) below sea level.
An oceanic plateau is a large, relatively flat submarine region that rises well above the level of the ambient seabed.[46] While many oceanic plateaus are composed of continental crust, and often form a step interrupting the continental slope, some plateaus are undersea remnants of large igneous provinces. Continental crust has the highest amount of silicon (such rock is called felsic). Oceanic crust has a smaller amount of silicon (mafic rock).
The anomalous shale deposition, anoxia and mass extinction in the ocean basins.[47]
A mid-ocean ridge is a general term for an underwater mountain system that consists of various mountain ranges (chains), typically having a valley known as a rift running along its spine, formed by plate tectonics. This type of oceanic ridge is characteristic of what is known as an oceanic spreading center, which is responsible for seafloor spreading.
Philippines, United States, Australia, Japan, Earth
Portugal, Brazil, Ocean, Africa, Asia
Ocean, Atlantic Ocean, Oceanography, Marine geology, Geology
Nasa, Antarctica, Solar System, Evolution, Apollo program
Earth, Earth science, Science, Geology, Moon
Chemistry, Meteorology, Physical oceanography, Hydrology, Global warming
Pacific Ocean, New Zealand, Atlantic Ocean, Alaska, Physical oceanography