This article is about increased activity and resistance in muscles. For increased blood pressure, see Hypertension.
Classification and external resources
ICD-10 9 DiseasesDB MeSH D009122

Hypertonia is a term sometimes used synonymously with spasticity in the literature surrounding damage to the central nervous system, namely upper motor brain lesions.[1] Impaired ability of damaged motor neurons to regulate descending pathways gives rise to disordered spinal reflexes, increased excitability of muscle spindles, and decreased synaptic inhibition.[2] These consequences result in abnormally increased muscle tone of symptomatic muscles.[3] Some authors suggest that the current definition for spasticity, the velocity-dependent over-activity of the stretch reflex, is not sufficient as it fails to take into account patients exhibiting increased muscle tone in the absence of stretch reflex over-activity. They instead suggest that “reversible hypertonia” is more appropriate and represents a treatable condition that is responsive to various therapy modalities like drug and/or physical therapy.[4]

Symptoms associated with central nervous systems disorders are classified into positive and negative categories. Positive symptoms include those that increase muscle activity through hyper-excitability of the stretch reflex (i.e., rigidity and spasticity) where negative symptoms include those of insufficient muscle activity (i.e. weakness) and reduced motor function.[5] Often the two classifications are thought to be separate entities of a disorder; however, some authors propose that they may be closely related.[6]


Hypertonia is caused by upper motor neuron lesions which may result from injury, disease, or conditions that involve damage to the central nervous system. Motor neuronal hyperactivity occurs due to loss of inhibition of cells of the anterior horn of the spinal cord resulting from reticulospinal tract damage. Different patterns of muscle weakness or hyperactivity can occur based on the location of the lesion, causing a multitude of neurological symptoms, including spasticity, rigidity, or dystonia.[7]

Spastic hypertonia involves uncontrollable muscle spasms, stiffening or straightening out of muscles, shock-like contractions of all or part of a group of muscles, and abnormal muscle tone. It is seen in disorders such as cerebral palsy, stroke, and spinal cord injury. Rigidity is a severe state of hypertonia where muscle resistance occurs throughout the entire range of motion of the affected joint independent of velocity. It is frequently associated with lesions of the basal ganglia. Individuals with rigidity present with stiffness, decreased range of motion and loss of motor control. Dystonic hypertonia refers to muscle resistance to passive stretching (in which a therapist gently stretches the inactive contracted muscle to a comfortable length at very low speeds of movement) and a tendency of a limb to return to a fixed involuntary (and sometimes abnormal) posture following movement.


Therapeutic interventions are best individualized to particular patients.

Basic principles of treatment for hypertonia are to 1) avoid noxious stimuli and 2) provide frequent range of motion exercise.

Physical interventions

Physiotherapy has been shown to be effective in controlling hypertonia through the use of stretching aimed to reduce motor neuron excitability.[8] The aim of each physical therapy session will be to inhibit excessive tone as far as possible, give the patient a sensation of normal position and movement, and to facilitate normal movement patterns. While static stretch has been the classical means to increase range of motion, PNF stretching has been used in many clinical settings to effectively reduce muscle spasticity.[9]

Icing and other topical anesthetics may decrease the reflexive activity for short period of time in order to facilitate motor function. Inhibitory pressure (applying firm pressure over muscle tendon), promoting body heat retention, rhythmic rotation (slow repeated rotation of affected body part to stimulate relaxation)[10] have also been proposed as potential methods to decrease hypertonia. Aside from static stretch casting and splinting techniques are extremely valuable to extend joint range of motion lost to hypertonicity[11] A more unconventional method for limiting tone is to deploy quick repeated passive movements to an involved joint in cyclical fashion; this has also been demonstrated to show results on persons without physical disabilities.[8] For a more permanent state of improvement, exercise and patient education is imperative.[10] Isokinetic,[12][13][14][15] aerobic,[16][17][18] and strength training[19][20][21][22] exercises should be performed as prescribed by a physiotherapist, and stressful situations that may cause increased tone should be minimized or avoided.[10]

Pharmaceutical interventions

Baclofen, diazepam and dantrolene remain the three most commonly used pharmacologic agents in the treatment of spastic hypertonia. Baclofen is generally the drug of choice for spinal cord types of spasticity, while sodium dantrolene is the only agent which acts directly on muscle tissue. Tizanidine is also available. Phenytoin with chlorpromazine may be potentially useful if sedation does not limit their use. Ketazolam, not yet available in the United States, may be a significant addition to the pharmacologic armamentarium. Intrathecal administration of antispastic medications allows for high concentrations of drug near the site of action, which limits side effects.[11]

See also


External links

  • "The Clasp Knife Phenomenon" at


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.