World Library  
Flag as Inappropriate
Email this Article

Algebraic expression

Article Id: WHEBN0004283745
Reproduction Date:

Title: Algebraic expression  
Author: World Heritage Encyclopedia
Language: English
Subject: Expression (mathematics), Algebraic fraction, Planck units, Algebraic definition, Algebraic sentence
Collection: Elementary Algebra
Publisher: World Heritage Encyclopedia

Algebraic expression

In mathematics, an algebraic expression is an expression built up from constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).[1] For example, 3x^2 - 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power \tfrac{1}{2},


is also an algebraic expression.

A rational expression is an expression that may be rewritten to a rational fraction by using the properties of the arithmetic operations (commutative properties and associative properties of addition and multiplication, distributive property and rules for the operations on the fractions). In other words, a rational expression is an expression which may be constructed from the variables and the constants by using only the four operations of arithmetic. Thus, 3x^2 - 2xy + c is a rational expression, whereas \sqrt{\frac{1-x^2}{1+x^2}} is not.

A rational equation is an equation in which two rational fractions (or rational expressions) of the form \frac{P(x)}{Q(x)} are set equal to each other. These expressions obey the same rules as fractions. The equations can be solved by cross-multiplying. Division by zero is undefined, so that a solution causing formal division by zero is rejected.


  • Terminology 1
  • Conventions 2
    • Variables 2.1
    • Exponents 2.2
  • Algebraic vs. other mathematical expressions 3
  • See also 4
  • Notes 5
  • References 6
  • External links 7


Algebra has its own terminology to describe parts of an expression:

1 – Exponent (power), 2 – coefficient, 3 – term, 4 – operator, 5 – constant, x, y - variables



By convention, letters at the beginning of the alphabet (e.g. a, b, c) are typically used to represent constants, and those toward the end of the alphabet (e.g. x, y and z) are used to represent variables.[2] They are usually written in italics.[3]


By convention, terms with the highest power (exponent), are written on the left, for example, x^2 is written to the left of x. When a coefficient is one, it is usually omitted (e.g. 1x^2 is written x^2).[4] Likewise when the exponent (power) is one, (e.g. 3x^1 is written 3x),[5] and, when the exponent is zero, the result is always 1 (e.g. 3x^0 is written 3, since x^0 is always 1).[6]

Algebraic vs. other mathematical expressions

The table below summarizes how algebraic expressions compare with several other types of mathematical expressions.

A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as x + 4.

See also


  1. ^ Morris, Christopher G. (1992). Academic Press dictionary of science and technology. p. 74. 
  2. ^ William L. Hosch (editor), The Britannica Guide to Algebra and Trigonometry, Britannica Educational Publishing, The Rosen Publishing Group, 2010, ISBN 1615302190, 9781615302192, page 71
  3. ^ James E. Gentle, Numerical Linear Algebra for Applications in Statistics, Publisher: Springer, 1998, ISBN 0387985425, 9780387985428, 221 pages, [James E. Gentle page 183]
  4. ^ David Alan Herzog, Teach Yourself Visually Algebra, Publisher John Wiley & Sons, 2008, ISBN 0470185597, 9780470185599, 304 pages, page 72
  5. ^ John C. Peterson, Technical Mathematics With Calculus, Publisher Cengage Learning, 2003, ISBN 0766861899, 9780766861893, 1613 pages, page 31
  6. ^ Jerome E. Kaufmann, Karen L. Schwitters, Algebra for College Students, Publisher Cengage Learning, 2010, ISBN 0538733543, 9780538733540, 803 pages, page 222


  • James, Robert Clarke; James, Glenn (1992). Mathematics dictionary. p. 8. 

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.