World Library  
Flag as Inappropriate
Email this Article

Late Cretaceous

 

Late Cretaceous

System/
Period
Series/
Epoch
Stage/
Age
Age (Ma)
Paleogene Paleocene Danian younger
Cretaceous Upper/
Late
Maastrichtian 66.0–72.1
Campanian 72.1–83.6
Santonian 83.6–86.3
Coniacian 86.3–89.8
Turonian 89.8–93.9
Cenomanian 93.9–100.5
Lower/
Early
Albian 100.5–~113.0
Aptian ~113.0–~125.0
Barremian ~125.0–~129.4
Hauterivian ~129.4–~132.9
Valanginian ~132.9–~139.8
Berriasian ~139.8–~145.0
Jurassic Upper/
Late
Tithonian older
Subdivision of the Cretaceous system
according to the IUGS, as of July 2012.

The Late Cretaceous (100.5–66 Ma) is the younger of two epochs into which the Cretaceous period is divided in the geologic timescale. Rock strata from this epoch form the Upper Cretaceous series. The Cretaceous is named after the white limestone known as chalk which occurs widely in northern France and is seen in the white cliffs of south-eastern England, and which dates from this time.

Contents

  • Climate 1
  • Geography 2
  • Vertebrate fauna 3
    • Dinosaurs 3.1
    • Pterosaurs 3.2
    • Mammals 3.3
    • Marine life 3.4
  • Flora 4
  • Cretaceous–Paleogene mass extinction 5
  • See also 6
  • References 7

Climate

During the Late Cretaceous, the climate was warmer than present, although throughout the period a cooling trend is evident.[1] The tropics became restricted to equatorial regions and northern latitudes experienced markedly more seasonal climatic conditions.[1]

Geography

Due to plate tectonics, the Americas were gradually moving westward, causing the Atlantic Ocean to expand. The Western Interior Seaway divided North America into eastern and western halves; Appalachia and Laramidia.[1] India maintained a northward course towards Asia.[1] In the Southern Hemisphere, Australia and Antarctica seem to have remained connected and began to drift away from Africa and South America.[1] Europe was an island chain.[1] Populating some of these islands were endemic dwarf dinosaur species.[1]

Vertebrate fauna

Dinosaurs

This was a period of great success for dinosaurs, with many new types appearing and diversifying. The hadrosaurs, ankylosaurs, and ceratopsians experienced success in Asiamerica (Western North America and eastern Asia). Tyrannosaurs dominated the large predator niche in North America.[1] They were also present in Asia, although were usually smaller and more primitive than the North American varieties.[1] Pachycephalosaurs were also present in both North America and Asia.[1] Dromaeosaurs shared the same geographical distribution, and are well documented in both Mongolia and Western North America.[1] By contrast therizinosaurs (known previously as segnosaurs) appear to have been living solely in Asia.[1] Gondwana held a very different dinosaurian fauna, with most predators being abelisaurs and carcharodontosaurs; and titanosaurs being among the dominant herbivores.[1]

Birds became increasingly common and diverse, diversifying in a variety of enantiornithe and ornithurine forms. Early Neornithes such as Vegavis co-existed with forms as bizarre as Yungavolucris and Avisaurus. Though mostly small, marine Hesperornithes became relatively large and flightless, adapted to life in the open sea.

Pterosaurs

Though primarily represented by azhdarchids, other forms like pteranodontids, tapejarids (Caiuajara and Bakonydraco), nyctosaurids and uncertain forms (Piksi, Navajodactylus) are also present. Historically, it has been assumed that pterosaurs were in decline due to competition with birds, but it appears that neither group overlapped significantly ecologically, nor is it particularly evident that a true systematic decline was ever in place, especially with the discovery of smaller pterosaur species.[2]

Mammals

Didelphid marsupials and primitive placental mammals also became common. Still, mammals remained small.[1]

Marine life

In the seas, mosasaurs suddenly appeared and underwent a spectacular evolutionary radiation. Modern sharks also appeared and giant-penguin-like polycotylid plesiosaurs (3 meters long) and huge long-necked elasmosaurs (13 meters long) also diversified. These predators fed on the numerous teleost fishes, which in turn evolved into new advanced and modern forms (Neoteleostei). Ichthyosaurs and pliosaurs, on the other hand, went extinct during the Cenomanian-Turonian anoxic event.

Flora

Near the end of the Cretaceous Period, flowering plants diversified. In temperate regions, familiar plants like magnolias, sassafras, roses, redwoods, and willows could be found in abundance.[1]

Cretaceous–Paleogene mass extinction

The Cretaceous–Paleogene extinction event was a large-scale mass extinction of animal and plant species in a geologically short period of time, approximately (Ma). It is widely known as the K–T extinction event and is associated with a geological signature, usually a thin band dated to that time and found in various parts of the world, known as the Cretaceous–Paleogene boundary (K–T boundary). K is the traditional abbreviation for the Cretaceous Period derived from the German name Kreidezeit, and T is the abbreviation for the Tertiary Period (a historical term for the period of time now covered by the Paleogene and Neogene periods). The event marks the end of the Mesozoic Era and the beginning of the Cenozoic Era.[3] "Tertiary" being no longer recognized as a formal time or rock unit by the International Commission on Stratigraphy, the K-T event is now called the Cretaceous—Paleogene (or K-Pg) extinction event by many researchers.

Non-

  1. ^ a b c d e f g h i j k l m n o "Dinosaurs Rule the World: Late Cretaceous Period." In: Dodson, Peter & Britt, Brooks & Carpenter, Kenneth & Forster, Catherine A. & Gillette, David D. & Norell, Mark A. & Olshevsky, George & Parrish, J. Michael & Weishampel, David B. The Age of Dinosaurs. Publications International, LTD. Pp. 103-104. ISBN 0-7853-0443-6.
  2. ^ Prondvai, E., Bodor, E. R. & Ösi, A. 2014. Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity. Paleobiology 40, 288-321.
  3. ^ Fortey R (1999). Life: A Natural History of the First Four Billion Years of Life on Earth. Vintage. pp. 238–260.  
  4. ^ Fastovsky DE, Sheehan PM (2005). "The extinction of the dinosaurs in North America". GSA Today 15 (3): 4–10.  
  5. ^ Sloan RE, Rigby K, Van Valen LM, Gabriel Diane (1986). "Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation". Science 232 (4750): 629–633.  
  6. ^ Fassett JE, Lucas SG, Zielinski RA, Budahn JR (2001). "Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA" (PDF). International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000, Vienna, Austria 1053: 45–46. Retrieved 2007-05-18. 
  7. ^ Sullivan RM (2003). "No Paleocene dinosaurs in the San Juan Basin, New Mexico". Geological Society of America Abstracts with Programs 35 (5): 15. Retrieved 2007-07-02. 
  8. ^ a b MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers, P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997). "The Cretaceous–Tertiary biotic transition". Journal of the Geological Society 154 (2): 265–292.  

References

See also

Scientists have hypothesized that the Cretaceous–Paleogene extinctions were caused by one or more catastrophic events such as massive asteroid impacts or increased volcanic activity. Several impact craters and massive volcanic activity in the Deccan traps have been dated to the approximate time of the extinction event. These geological events may have reduced sunlight and hindered photosynthesis, leading to a massive disruption in Earth's ecology. Other researchers believe the extinction was more gradual, resulting from slower changes in sea level or climate.[8]

[8]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.